REPORT No. 141 # EXPERIMENTAL RESEARCH ON AIR PROPELLERS, V By W. F. DURAND and E. P. LESLEY Leland Stanford Junior University, California 58006-28-12 167 | | • | | | - | | | |-----|---|---|---|---|----------|--| | · . | | | | | | | | | | | • | | | | | | | | | | | | | | | | | | • | | | | | · | | | | | | | | • | | | | | | • | | | | | | | | | | · | · | | | | | | | | | - | <u>-</u> | | # REPORT No. 141 ## EXPERIMENTAL RESEARCH ON AIR PROPELLERS, V. BY W. F. DURAND AND E. P. LESLEY. #### (1) SCOPE OF INVESTIGATION COVERED BY PRESENT REPORT. National Advisory Committee reports Nos. 14, 30, 64 comprise the results of a series of wind-tunnel tests on model forms of air propellers, extending over a three-year program of experimental work. These reports were made progressively and each without reference to the results given in preceding reports and relating to forms perhaps adjacent in geometrical form and proportion. These reports thus represent a survey, made in three parts, of a somewhat extended area covering a considerable number of model forms and proportions and varying in various characteristics in a systematic and regular manner. At the conclusion of the work thus carried on in parts, it has seemed desirable to review the entire series of results, to examine through graphical and other appropriate means the nature of the history of the characteristics of operation as related to the systematic variation in characteristics of form, proportions, etc., through the entire series of such variations, to check doubtful points by repetition of test, to remove inconsistencies where found, and generally to develop, for the series of models represented by these tests, a consistent set of results as judged by the relation of those for any one model to those for all models adjacent in geometrical form and proportion. It is the purpose of the present report to give the results of this general analysis and review of these series of experimental observations. # NUMBER AND CHARACTERISTICS OF MODEL FORMS. The number of model forms included in the analysis which is the subject of the present report is 88. The three reports on which this analysis is primarily based covered a certain number of additional forms, the results for which are not here included. These omitted forms represent unusual or special forms or slight variations from normal types and were intended to indicate the results to be anticipated by such departures from the more normal range of form and proportion. The results derived from these models are generally without valuable or hopeful indications. There remains the aggregate of 88 models distributed over the range of variations in form and proportion as follows: | | Variations | • | |---------------------------------|------------|---| | Pitch ratio. | 6 | | | Ares of blade | | | | Form of blade | . 2 | | | Form of cross section of blade. | 4 | | | Mode of nitch distribution | 4 | | In designating these models, the following notation has been employed: ``` Form of blade contour No. 1. F_1 (see fig. 1). These various models cover the following combinations of characteristics of form and proportion: ``` In addition to the above 83 models the report includes results for: Four models of constant F_2A_1 and nominal pitch ratio 0.7, but with maximum thickness of cross-section at 0.17, 0.25, 0.41, and 0.49 of the width from the leading edge. See figures 14, 15, 16, and 17. One model of constant $F_1A_1S_1$ with blades made adjustable for change of pitch, the pitch being uniform at 0.7 pitch ratio. The characteristics of these various models in detail will be found in Table I. TABLE I.—Model characteristics. | Num-
bec. | Section
symbol. | Form
symbol. | Area
symbol. | Pitch
symbol. | Pitch
ratio. | Mean
blade
width. | Num-
ber. | Section
symbol. | Form
symbol. | Area
symbol. | Pitch
symbol. | Pitch
ratio. | Mean
blade
width. | |---|--|--|-----------------|---|--|-------------------------|--|--|--|-----------------|--|--|--| | 1 2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18 9 20 12 22 22 23 23 23 23 23 23 23 23 23 23 23 | ដងដល់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ដង់ | ANASKA SAKAKA SA | | andanananananananananananananananananan | .7
.5
.5
.5
.9
.9
.7 | | 45
46
47
47
48
80
80
90
95
111
112
113
114
115
117
118
129
121
121
122
123
124
124
125
126
127
128
128
129
129
121
121
121
122
123
124
125
126
127
128
128
128
128
128
128
128
128
128
128 | និងសំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស
សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំនាស់សំ | ANTOCKARECKARECKARECKARECKARECKARECKARECKARE | | authaundauthaunan authaun auth |
0.55
1111111557779977331111111111111111111111 | 0.15r
-15r
-15r
-20r
-15r
-20r
-15r
-15r
-15r
-15r
-15r
-15r
-15r
-15 | ¹ Adjustable pitch. TABLE II.—Dimensions of sections (see Fig. 18). | | , | | ABLE II. | | sions of s | · · · · · · · · · · · · · · · · · · · | | | <u> </u> | | |-------------|--|--------------------------|---|--------------------------------------|--|--|--|---|-----------|--------------------------------| | Fig.
No. | Section
form and
area. | Radius
of
section. | AB. | Aï. | AU
and
BD. | i, e. // | er. | EM. | R9. | 0. | | | Sambols. | inokes. | . Pecker. | Inches. | Inches. | Inches. | Inches. | Inches. | Inches. | Degrees. | | | | [| 245 | 0.90
.90
.90 | 0.05
.05 | 1.70 | 1. 19
1. 01 | | 0.15 | 78 | | 3 | S ₁ F ₁ A ₂ | J 10 | 2.70 | .90 | .08 | .50 | . 84
. 66 | | | 78
69
60
51
42 | | | | 13 | 270 | .90 | .05 | 40
30 | . 66
. 49 | | ******** | 51
42 | | | | i 4. | | | | 8 £3838 | | ļ | | _ | | |] | 7 | 8.60 | 1.20 | . 05
05 | .00 | L 19
L-01 | | .20 | 78
69 | | 4 | 8, F; A2 | ₹ 10 , | 1.00 | 1.20 | .05 | 30 | . 84
. 66 | | | 60 | | | . 1 | 10
13
16 | 3.27
8.60
3.60
3.60
3.60 | 1.20
1.20
1.20
1.20
1.20 | See | . 30 | 44 | | | 78
69
60
51
42 | | | | | | | ńĸ. | 70 | 1, 10 | | .18 | | | A | B ₁ F ₂ A ₁ | 1 .7 | 3.00
3.23
3.14
2.68
1.90 | 1.00
1.07
1.05 | 3888 | òò | L 19 | | | 78
69
60
51
42 | | ٠ | pd 11 41-4-4 | 10
18 | 2 68 | .89 | .06 | 8648 | .8 <u>4</u>
.66 | | | 60
51 | | | l. ; | l 16 | | 63 | .08 | 21,00 | .49 | | | 42 | | | ' | 'r <u>4</u> | 4.00
4.30
4.18
8.58
2.54 | 1.33
1.43
1.30
1.19 | .06
.06 | 70 | 1. 19
1. 01
. 84
. 66 | | .25 | 78 | | 6 | S ₁ F ₂ A ₂ | 7 | 4.18 | 1.20 | .05 | 28238 | 1.01 | | , | 78
69
60
51
42 | | | ; | 13
16 | 8.58 | 1.10 | .05 | | | | | ្រូវ | | | · | | | 85 | .05 | -30 | 49 | | | '42 | | |] : | 7 10 18 18 16 | 245
270
270
270
270 | .50 | S-888 | .30 | 1. 19
1. 01
84 | | | 78 | | 7. | 8: F: A1 | d 16 | 270 | 90
90
90 | .06 | 8588 | 1.01
84 | 0, 17
17
18 | | 78
69.
60
51
- 42 | | | 1 | 18 | 2.70 | .90 | .05
.05 | 40 | .66
.49 | .13
.10 | | . 81 | | | • | • | | | | | | 0 | | ļ | | | i | 7
10
13
16 | 3. 27
8. 60
8. 60
8. 60
8. 60 | 1.20
1.20
1.20
1.20
1.20 | .05
.05 | 70 | 1. 19
1. 01 | | | 78
69
60
51
42 | | 8 | Sa Fa Aa | 10 | 8.60 | 120 | .03 | 888 | .84 | 17 | | 60 | | | | 18 | 8.60 | 1.20 | OS
OS | 30 | .66
.49 | .17
.17
.13 | | 51 | | | ! | | | 1.00 | .08 | 100 | | · ••• | | | | _ | 1:2 | 7
10
13
16 | 8.22 | 1.07 | .05 | :60 | 1.01 | .17 | | 78
69 | | 9 | Sa F2 A1 | 서 19 | 3.14 | 1,05 | 35 | 40 | . 84 | 17 | | 90 | | | | 16 | 3.00
8.22
3.14
2.65
1.90 | | .05 | \$60
50
50
50
50
50
50
50
50 | 1.19
1.01
.84
.66 | 17
13
10 | •••••• | 78
69
60
51
43 | | | <u>:</u> | 1 4 | | 1 29 | | | 1 10 | | - | | | 10 | | 7 | 4.00
4.30
4.18
8.58
2.54 | 1.83
1.43
1.39
1.19 | .05
.05
.05
.05 | 70
60
60
70
70
70
70
70
70
70
70
70
70
70
70
70 | 1.19
1.01
84 | .17 | | 78
69
60
51
42 | | 10 | 8, F, A | 10 | 1.08 | 1.39 | | - 30 | .84
.66 | 117 | | 60 | | | 1 . | L 16 | 2.54 | .85 | .06 | | .40 | .18
.10 | | 42 | | | | 1 4 | 3.00 | 1.00 | .05 | 70
80 | L 19 | <u> </u> | l | 78 | | 11 | 8 ₂ F ₂ A ₁ |] 7 | 2.00
8.22
8.14
2.68
1.90 | 1.07
1.08 | 05
05
05
05 | 2.30 | 1.19
1.01
.84 | .08 | | 78
69
60
51
42 | | | 1 -2 - 2 - 20- 2 | 10
13
16 | 2.68 | .80 | .06 | | .66 | .08 | j | . 81 | | | | լ 16 | | .63 | 1 | 30 | .49 | .05 | | .43 | | | | f # | 4.00
4.20
4.18
8.58
2.54 | 1.39
1.42
1.39 | .05
.05 | .70
.60 | 1.19
1.01 | | | 78 | | 12 | Se F2 Ac | l 16 | 4.18 | 1.39 | .06 | .50 | 1.01 | .08 | | 78
69
60
51
42 | | | 1 | 10
13
15 | 8.58 | 1. 19
85 | .05 | ~.40 | . 84
. 66 | .08
.07
.06 | ********* | 81 | | | 1 | 1. | 1 | | | 2,30 | | .100 | | 42 | | | | [\$ | 8.00
8.22
8.14 | 1.00 | .05 | 70 | 1 19
1 01 | | .18 | 78 | | 13 | S. F. A | 10
13
16 | 8.14 | . 1.07
1.05 | . 05
05 | 28838 | .84 | | .08 | 78
69
60
51 | | | | 18 | 2.68
1.90 | .89
.63 | .05 | 30 | .66 | | .07 | 51
22 | | | . | | 1 m.e | RI | | | |) · · · · · · · · · · · · · · · · · · · | 1 | ٠. | | 14 | | 7
10
13
16 | 3.00
8.22
3.14
2.68
1.90 | .51
.55
.53
.45 | 06 | | 1, 19
1, 01
.84 | | .18 | 78
69
60
81
42 | | 14 | S, F, A, | 1 18 | 9.14 | . 53 | - 04 | <u>30</u> | .84
.86 | | | ĕŏ | | | j | 1 16 | 1.00 | | .06 | 2.30 | 49 | | | 42 | | | j | f 4 | 8.00 | | 8 1828 88 8888 8 | .70 | 1.10 | | .18 | ſ | | 15 | Se Fa A | 7 | 8.00
8.22
8.14
2.68
1.90 | .75
.81
.78
.67
.47 | 0,5 | .60
.50 | 1. 19
1. 01
84
65 | [| ļ |) <u>6</u> 6 | | | | 10
13
16 | 2.68 | 67 | .62 | . 36 | 66 | | | 78
69
60
81
43 | | | :. ; | l 16 | | | .08 | .30
7.3 | 40° | ļ | | 49 | | | 1 | <u>د</u> | 8.00
8.22
8.14
2.68
1.90 | 1,28
1,20
1,20
1,10
78 | | . 20. | 1.19
1.01
.84
.05 | | .18 | i 78 | | 16 | S: F: A: | 7
10
13
16 | 8,22 | 1.32 | .05
.04
.05
.05 | -,60
.50 | 1.01 | | ļ | 78
- 69
60
51
- 42 | | | | 1 1 | 2 68 | 1.10 | .05 | 40 | .65 | | | 2 | | | : | 1 | | 78 | .08 | 1 20 | | | | | | | 1 ' | 7
10
13
16 | 8.00
8.22
8.14
2.68
1.90 | 1.47
1.58
1.54
1.31
.93 | 05
05
05
05
05
05
05
05
05 | 07. | 1. 19
1. 01
. 84
. 65
. 49 | | .18 | 78 | | 17 | Se Fa A | 10 | 8.14 | 1.64 | :18 | .80 | 1.01 | | | 78
66
60
51
42 | | | ! | 18 | 2.68 | 1.31 | 95 | 40 | .65 | | ļ | , gř | | | <u>[</u> | | | | | 30 | 1 .49 | l | ····· | 42 | The dimensions of the sections shown in figures 3 to 17 are given in Table II, reference being made to figure 18. These models furthermore permit of grouping in such manner as to give results for the following series of graded variations: | 6 variations of pitch ratio with 4 combinations of | .F | ASP. | |---|----|------| | 5 variations of pitch ratio with 4 other combinations of | | | | 3 variations of pitch ratio with 13 other combinations of | | | | 2 variations of contour with 30 combinations of | | | | 2 variations of blade area with 38 combinations of | | | | 2 variations of blade section with 24 combinations of | | | | 3 variations of blade section, with 6 other combinations of | | | | 4 variations of blade section with 5 other combinations of | | | | 2 variations of pitch distribution with 26 combinations of | | | | 4 variations of pitch distribution with 5 other combinations of | | | | - | | • | ### METHOD OF TEST. The general method of test has already been described in preceding reports (Nos. 14, 30) and need not be more especially referred to at this point. ## (2) REDUCTION OF EXPERIMENTAL RESULTS. For the reduction of experimental model results to forms suited to use in practical problems, the following notation is employed. D - diameter. N-revolutions. V - velocity. Δ - density of air. H = altitude. T= thrust. Q — torque. P = effective power (power delivered by engine to propeller). P_1 = useful power (utilized by propeller for propulsion of plane). $\eta = \text{efficiency} = P_1 + P$. B, C-coefficients variously specified by subscript, and serving to relate T, Q, P, or P_1 to some function of V, D, N. $$x = V/ND$$. ## COEFFICIENTS OF THRUST, TORQUE, AND POWER. The law of comparison which is accepted for the discussion of experimental results on model air propellers and for the purpose of making use of such results in connection with practical problems relating to full size propellers, may be stated thus: For propellers of similar geometrical form and at equal values of the function V/ND the following relations hold $$T \sim V^2 D^2 \tag{1}$$ $$Q \sim V^2 D^2 \tag{2}$$ $$Q \sim V^3 D^2 \tag{2}$$ These relations may be expressed in the form of equations by the introduction of coefficients B_1 , B_2 . In order furthermore to make these cofficients non-dimensional while at the same time measuring T and Q themselves in gravitational units, we may introduce the factor g, thus giving equations as follows: $$gT - B_1 \Delta V^2 D^2 \tag{3}$$ $$gQ = B_2 \Delta \nabla^2 D^2 \tag{4}$$ This gives for the coefficients B_1 and B_2 the values: $$B_1 = \frac{gT}{\Delta V^2 D^2} \tag{5}$$ $$B_2 = \frac{gQ}{\Delta V^2 D^2} \tag{6}$$ We may now restate the assumed law of comparison as follows: For propellers of similar geometrical form and at equal values of the function V/ND, values of B_1 in (5) will be the same independent of absolute size; and likewise for values of B_1 in (6). If then we multiply equation (5) by the equation $x^* = (V/ND)^*$ it is evident that we shall have, on the left, a new coefficient, likewise independent of absolute size, and expressed in form as determined by the right hand member of the resulting equation. This will be clear by holding in mind two propellers of similar geometrical form and operating at the same value of V/ND. For these particular conditions, the values of the coefficient B_1 , for each propeller, will be the same. If then this
single value of B_1 be multiplied by the value of V/ND we shall have a new single value, likewise applicable to these two propellers operating at this value of V/ND. We may similarly multiply or divide by any power of V/ND or by $(V/ND)^n$ where n may have any value positive or negative. We may thus derive an indefinite series of coefficients, all relating to thrust, and in each case fulfilling the condition of equal values of coefficient for equal values of V/ND for two propellers of similar geometrical form; and if for some two propellers, then for any two and hence for any number, so long as they belong to the same family as regards geometrical type or form. Thus by way of example, by suitably selecting the index of V/ND, we derive coefficients for T related as follows to the variables V, D, N, Δ : $$\frac{gT}{\Delta V^2 D^2}, \frac{gT}{\Delta N^2 D^4}, \frac{gT}{\Delta V^4 N^{-2}}, \frac{gT}{\Delta V N D^2}$$ (7) It will be noted that of these four examples, the first involves V and D, the second N and D, the third V and N and the fourth V, N, D. We may derive similarly coefficients for Q as follows: $$\frac{gQ}{\Delta V^2 D^2}, \frac{gQ}{\Delta N^2 D^2}, \frac{gQ}{\Delta V^2 N^{-2}}, \frac{gQ}{\Delta V N D^2}$$ (8) Turning now to power we have immediately from (8) and (4) $$gP_1 = gTV - B_1\Delta V^2D^2 \tag{9}$$ $$gP = 2\pi gQN = 2\pi_1 B_2 \triangle NV^2 D^2 \qquad (10)$$ Hence $$\frac{P_1}{P} = \eta = \frac{B_1}{2\pi B_2} \cdot \frac{V}{ND} \tag{11}$$ But for any two propellers geometrically similar in form and at the same value of V/ND, the two values of B_1 are the same, and likewise for B_2 , while by specification V/ND is the same. Hence from (11), the efficiency will be the same. This means specifically that for any pair of propellers geometrically similar in form and operating at equal values of V/ND, the efficiencies will be the same; or more broadly, that throughout all the members of a given family of propellers of the same geometrical form, a given value of V/ND will fix the efficiency; or otherwise, that for a given family of the same geometrical form, efficiency is a function of V/ND only. From (9) we have the coefficient, $$B_1 = \frac{gP_1}{\Delta V^2 D^2} \tag{12}$$ In the same manner as for T and Q we may now derive a series of coefficients from that defined as in (12), by multiplication or division by powers of V/ND. We may thus derive in particular three coefficients as follows: $$\frac{gP_1}{\Delta N^2D^2}, \frac{gP_1}{\Delta V^2D^2}, \frac{-gP_1}{\Delta V^2N^{-2}}.$$ (13) There will obviously be three similar coefficients for the effective power P which may be derived from (10) in the same manner in which those expressed in (13) are derived from (9). It is clear, however, that if for two similar propellers at the same value of V/ND there is a numerical coefficient relating P, to some function of V, N, D, and which numerical coefficient is the same for both propellers, then since the efficiency is also the same, there will be another numerical coefficient relating P to the same function of V, N, D, and which numerical coefficient will likewise be the same for both propellers. We may therefore use coefficients having the forms given in (13) and derived either from P_1 or from P. For present purposes we shall use the effective power P as the primary power quantity and we shall denote the three coefficients derived from effective power and having forms as above, respectively by C_i , C_2 , C_3 . We shall have then for these coefficients: $$C_1 = \frac{gP}{\Delta N^3 D^3} \tag{14a}$$ $$C_3 = \frac{gP}{\Delta V^3 D^3} \tag{14b}$$ $$C_{\rm s} = \frac{gP}{\Delta V^{\rm s} N^{-2}} \tag{14c}$$ The following relations will be noted: $$\begin{array}{l} C_t = (V/ND)^2 C_t \\ C_t = (V/ND)^2 C_t \end{array} \tag{15}$$ With any consistent set of units, we shall then have a set of coefficients C_1 , C_2 , independent of the system of units as such, and hence the same for either metric or English measures. It results furthermore that in these basic formulæ, power is measured in kilogram-meters per second or foot-pounds per second and not horsepower. Likewise speed is measured in meters per second or feet per second and not kilometers per hour or miles per hour. Collecting these various equations we have as follows: $$gP = C_1 \Delta N^a D^a \tag{16}$$ $$gP = O_2 \Delta V^0 D^2 \tag{17}$$ $$gP = C_1 \Delta V^* N^{-1} \tag{18}$$ $$X = V/ND \tag{19}$$ $$P_{\bullet} = \eta P \tag{20}$$ η = function of V/ND as in tables or diagrams $$T = P_1 \div V \tag{21}$$ $$Q = P \div 2\pi N \tag{22}$$ In the use of these equations it must be remembered that the units are: Metric: meter, kilogram, second. English: foot, pound, second. Hence D is measured in meters or feet. N is measured in revolutions per second. V is measured in meters per second, or feet per second. △ is measured in kilos. per cubic meter, or pounds per cubic foot. P is measured in kilogram meters per second, or foot-pounds per second. T is measured in kilograms, or pounds. Q is measured in kilogram-meters, or pound-feet. With these units, as previously noted, the values of C_1 , C_2 , C_3 will be nondimensional, and hence the same with either metric or English units. If any of these various quantities are expressed in terms of other units such as horsepower (metric or English), kilometers per hour, or miles per hour, they must be reduced to values in terms of the above units before direct use is made of the formulæ with the numerical values of C_1 , C_2 , C_3 as in Table VIII or figures 19 to 52. The actual test results are then put in the form of the following series of items. #### TABULAR. Values of coefficient C_1 on V/ND as argument. Values of coefficient C_2 on V/ND as argument. Values of coefficient C_3 on V/ND as argument. Values of efficiency η on V/ND as argument. See Table VIII. #### GRAPHIC. Values of coefficient C_1 plotted on V/ND as independent variable. Values of efficiency η spotted on curves of C_1 as above. (See figs. 19 to 52.) # APPLICATION OF EQUATIONS (16), (17), (18) TO PRACTICAL PROBLEMS. Of the nine quantities P_{11} P, V, N, D, \triangle , H, η , x, with the three coefficients C_1 , C_2 , some combination of which will enter into such problems, we may note first that: P_1 , is dependent on η and P, being related as in (20). η is dependent on x, being determined and expressed both in tabular form and graphically as a function of x alone. (See also (11).) The three coefficients C_1 , C_2 , C_3 , are dependent on x and are so determined and given in tabular and graphic form. (See Table VIII and figs. 19 to 52.) H is dependent on \triangle being connected by the relation between altitude and the density of the air. There remain then six variables, P, V, N, D, \triangle , x, any four of which (with one exception to be noted later) may be taken as the necessary and sufficient specification of a problem. The number of type problems which may thus arise involving combinations of these six quantities would be then the number of combinations of six things taken four at a time. This number is 15 and the combinations are as shown in column 1 of Table III. TABLE III. | No: | (1)
Knowns. | (2)
Unknowns. | (8)
C. | (4) | (5) | (6) | |--|--|---|-----------|------|--|-----| | 1 2 | A V Ď N | Px | γ 📜 | . V. | Y | | | | 00000000000000000000000000000000000000 | 4 K K & & & & & & & & & & & & & & & & & | **** | *** |
\(\frac{\frac}{\frac{\fir}}}}}}{\firac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}{\frac{\frac{\frac{\frac{\frac{\frac}{\frac{\frac{\frac{\fir}{\fir}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac | * | | 5
6
7
8
10
11
12
13
14
15 | 2000 2000 2000 2000 2000 2000 2000 200 | н формини форми
н формини форми | **** | * | *** | | Of these 15 combinations, all represent possible physical problems except the second, involving x, V, D, N. Since x = V/ND it is clear that we can not arbitrarily take values of more than three of these particular four quantities. This is the exception referred to above. In column (2) are given the unknowns for the several cases as noted. If the value of x is among the knowns, the value of the efficiency will follow immediately from Table VIII or figures 19 to 52. Otherwise, if x is among the unknowns, its value will result immediately from equation (19) as soon as V, D, and N are known. Once η is known, the useful power P, together with the thrust T and torque Q, may be readily found from equations (20), (21), (22), if desired. In column (3) a check mark indicates the cases which may be solved by equation (14a) or through the coefficient C_1 as defined by this equation. Similarly, in columns (4) and (5), check marks denote the cases which may be solved respectively by equations (14b) and (14c) or through the coefficients C_2 , C_3 as defined by these equations. The cases checked in column (3) are in effect those in which the four knowns of column (1) are found in equation (1) and similarly for those of columns (4) and (5). The stars in column (6) denote the cases which are checked in all three columns—that is, the cases which may be solved by any or all of the three equations. In addition to these eight cases, it will be noted that cases (13), (14), and (15) may be solved by either or both of two equations, while numbers (7), (8), (9) permit each of solution through one equation only as indicated. By the use of these equations, as choice or necessity may dictate, any of the 14 combinations of quantities as noted in Table III and representing possible problems involving these variables may be solved by suitable methods of computation. #### RELATION OF TYPE FORM OF PROPELLER TO THE PROBLEM OF DESIGN. In most problems in design or of like practical character, the geometrical type form of the propeller is first assumed. Such assumption is, of course, only tentative, but it is usually convenient to carry on the program of search for a suitable design through trial of a series of selected type forms. In such case, with a type form chosen, the relation between the coefficients C_1 , C_2 , C_3 , and V/ND is immediately fixed, and, assuming it to be one of the 88 type forms covered by the present report, reference may be made directly to the corresponding diagram or a table for values of the efficiency and of the coefficients C_1 , C_2 , C_3 , as functions of V/ND. In any such case, then, an assumed value of the efficiency η or of the function V/ND will immediately determine the values of these coefficients and the solution will proceed along lines as indicated. In certain cases, however (cases 7, 8, 9, Table III), the value of the coefficient may be left as an unknown, the various other quantities having been determined independent of any selected type form of propeller. The solution will then give the value of the coefficient C_1 , C_2 , C_3 . This coefficient value may then be sought in the table or on the diagrams for various type forms. Wherever it is found it will at the same time determine a value of x, and hence of efficiency, and the value of the latter will naturally be a guide in the choice of the type form to be ultimately accepted. If no acceptable results in these respects can be found, it means naturally that suitable changes must be made in the basic data—as, for example, an increase or decrease in the diameter or in the revolutions or speed or some combination change in these basic data which will give a different value of the coefficient and thence perhaps a more acceptable efficiency. In a similar manner, with other types of problems, as in Table III, the selected type form with the resultant value of C may be such as to give an unacceptable result, especially in terms of D, N, or V. In such case, likewise, the basic assumptions must be modified in such manner as to give finally an acceptable combination of values. ## (8) NOMOGRAPHIC DIAGRAMS. For the rapid graphical solution of problems such as those considered in the preceding section, nomographic diagrams have been prepared as in Plates I-VIII, the first four being in metric and the second four in English units. In the earlier reports, covering progressively the series of tests forming the subject of the present report, this feature was represented by the Eiffel logarithmic diagram, with curves showing values of C_1 for useful and effective power drawn thereon. This form of diagram, while furnishing a solution for all combinations of data involved in design problems, is, however, subject to two disadvantages: (1) The operative program with reference to the sequence and direction of the vectors is not easy to carry in mind with only occasional use, and this fact has undoubtedly discouraged, in some measure, the use of this exceedingly ingenious form of graphical solution for design problems. (2) Values are not infrequently determined by intersections of lines at rather acute angles, thus tending to magnify the probable error of construction. For these reasons the nomographic form of diagram has been chosen in the present report. In diagrams of this type the operative program is simpler than in the Eiffel diagram, and the intersections may be made less acute. To cover all combinations of the data which may enter into such problems, however, four diagrams are required rather than one. Thus, referring to the diagrams intended for metric units, Plates I, II, III are laid out for the use of equations (16), (17), (18), respectively, while Plate IV is provided for the solution of equation (19) or generally for connecting together the four quantities x, V, N, D. Any discussion of the theory of nomographic diagrams or of the details of construction of such diagrams is beyond the scope of the present report. It will be desirable, however, to give some description of the diagrams as they are, together with suggestions regarding their use, and with such data as may be required should it be desired to reconstruct such diagrams on a larger scale or to extend the scale on any of the axes of the diagrams as given. Referring to Plate I, the diagram is intended for the solution of the equation $$gP = C_1 \triangle N^2 D^2$$ Attention may first be directed to the following points: (1) The factor g does not appear in the construction. It is "absorbed" in the program of development of the diagram. This remark applies equally to the diagrams of Plates II, III. (2) The quantity \triangle does not appear directly in the construction. Its place is taken by altitude H. This is simply a matter of the numbering of the graduations on this axis. The actual distance which is involved in the graphical construction is really \triangle to a suitable unit, but the numbering on the scale represents the corresponding value of the altitude H. Thus the scales may be read directly in terms of altitude, while the density \triangle is the quantity really employed in the computation. This remark applies equally to the diagrams of Plates II, III. (3) The diagram contains axes, one each for the five quantities $P, C_1, H(\triangle), N, D$, as noted, together with two auxiliary axes Y_1, Y_2 . (4) Let these be arranged in order as follows $$D H(\triangle) N Y_2 Y_1 O_1 P$$ (5) These may then be taken in three successive groups of three each as follows (see also small key diagrams on plates): $$\begin{array}{cccc} H & Y_1 & C_1 \\ N & Y_2 & Y_1 \\ D & Y_2 & P \end{array}$$ - (6) The solution consists, in effect, then, of drawing three straight lines across these three groups of axes, as in
(5), in such manner as to contain the known data and to have common points on the auxiliary axes Y_1 and Y_2 . One of these lines will then cut the axis of the unknown at the value required for the solution. (See also small key diagrams as above.) - (7) It should be especially noted that the seven axes are associated in three groups of three as above and in this way only. - (8) The following points regarding the units of Plates I, II, III, IV should be noted. - (a) The unit of P is the metric horsepower direct and not the kilogram meter per second, as in the case of numerical computation. - (b) The unit of N is one revolution per minute instead of per second, as in the case of numerical computation. - (c) The unit of V is one kilometer per hour instead of one meter per second, as in the case of numerical computation. These changes are made possible by suitable changes in the units used for the various scales of the axes of P, V, N, and thus permit the direct use of these quantities in terms of the common engineering units of measurement. The scales on these diagrams, therefore, indicate as follows: V in kilometers per hour. N in r. p. m. D in meters. P in horsepower (metric). H in meters. C_1 , C_2 , C_3 , nondimensional. #### ILLUSTRATIVE PROGRAMS. Before noting a few illustrative programs, attention may be called to the following points: The solution in each case will call for the determination of the unknowns as noted in the several cases of Table III, and this will require the use of two diagrams—viz, Plate IV and either Plates I. II, or III. The former will determine one of the four quantities V, N, D, or x and the latter the remaining unknown. The coefficients C_1 , C_2 , C_3 are dependent on x = V/ND and may be determined from figures 19 to 52 or Table VIII as soon as x is known. In cases where z is one of the knowns, the values of C_1 , C_2 , C_3 become known from figures 19 to 52 and Table VIII. In such cases the nomographic diagrams are to be used in such order as may be required by the details of the case—that is, Plate IV first and then Plate I, II, or III, or vice versa. (See cases 3, 4, 5, 10, 11, 12, 13, 14, 15, Table III.) In cases where x is one of the unknowns, its determination may fall under either of two programs: - (1) If the knowns include V, N, D, then x is found immediately from the diagram of Plate IV. (See cases 1, 6, Table III.) - (2) If the knowns do not include V, N, D, they will include four quantities permitting the direct use of either Plate I, Plate II, or Plate III. This will give the value of C_1 , C_2 , or C_3 , and this through figures 19 to 52 or Table VIII will give x = V/ND, and this through Plate IV will give the remaining unknown. (See cases 7, 8, 9, Table III.) By way of illustration assume first case 1, Table III. The values V, D, N serve immediately to determine x or V/ND by the diagram of Plate IV. A line is drawn through the values of V and D, cutting Y. A second line is then drawn through N and the point on Y. This line extended to the axis of x or V/ND will then give the value desired. With x known, we find from the suitable diagram of figures 19 to 52 or from Table VIII the value of C_1 . We have now as knowns all values involved in the diagram of Plate 1 except P. The triad groups are then as follows: The line for the first triad being drawn, the point on Y_1 is determined. This point with N serves to determine Y_2 in the second triad, and this point with D serves to determine P in the third triad, and thus the solution is completed. Suppose with the same data it were chosen to use Plate 2. The program will proceed in entirely similar fashion. The value of x is first found and then C_2 . Then in Plate II the triad develop as follows: $$\begin{array}{cccc} H & Y_1 & D \\ V & Y_2 & Y_1 \\ C_2 & Y_2 & (P) \end{array}$$ In an entirely similar manner Plate 3 may be used if desired. Assume next the data of case 10, Table III. The values of x, D, N being given, V is found by Plate IV. The values of C_1 , C_2 , C_3 result immediately from x through figures 19 to 52 and Table VIII. In case Plate I is employed, the triad groups result as follows: $$\begin{array}{cccc} (H) & Y_1 & C_1 \\ N & Y_2 & Y_1 \\ D & Y_2 & P \end{array}$$ and H is determined as the remaining unknown. Assume again the data of case 7, Table III. The knowns P, Δ , D, N indicate Plate I as the only one available for this combination. The triad groups result as follows: $$\begin{array}{cccc} H & Y_1 & (O_1) \\ N & Y_2 & Y_1 \\ D & Y_3 & P \end{array}$$ The value of C_1 thus results, and this gives, through figures 19 to 52 or Table VIII, the value of x, and thence through Plate IV we find V. In all of these cases the value of the efficiency η will naturally play an important part in determining the course of treatment of a design problem. This value follows immediately from x, through figs. 19 to 52 and Table VIII. In many cases η will be assumed as a trial figure at some value which it is desired to realize if possible. Or otherwise the value of x = V/ND will be assumed with primary reference to the corresponding value of the efficiency. Diagrams of the nomographic type are especially well adapted to the purpose of indicating quickly the correlative changes in any two variables of either end triad, all other quantities remaining the same. Thus, a line in either end triad may be revolved about its Y axis point without disturbing the remainder of the diagram. In this manner the correlative changes of either of these two pair of variables are readily examined. Thus, in case (1), V, N, and D are assumed known. The value of x follows and thence C_1 and the solution proceeds, as previously indicated, to a resultant value of P. In this triad P is associated with D. We may then tilt the line back and forth about the point on Y_2 as center and read off the values of P for a series of diameters, all other quantities on this diagram remaining the same. In order to realize the latter condition, however, it is clear that if C_1 is to remain the same with the same type of propeller, then x = V/ND must remain the same, and hence (N remaining the same) V must be assumed to vary directly with the varying values of D. Thus if the D be taken 10 per cent larger than the first value assumed, then the value of P for a speed also 10 per cent greater at the same r. p. m. will be given by tilting the line about the intersection on Y_2 as indicated above. Again in Plate IV, suppose that the value of x is one which gives a value of the efficiency undesirably low. In this diagram x is associated with N. We may then tilt the xYN line about the Y point as a center and note the relation between change in the x. x and hence change in efficiency, the ratio of x to x being supposed to remain the same. Other similar applications of this convenient feature will occur to the interested reader. It is apparent that in all of these various cases the solution may be carried on through equations (20), (21), (22), to include, if desired, values of useful power, thrust, and torque. Nomographic diagrams might, of course, be prepared for the carrying out of the indicated computations, but their relatively lesser importance has not seemed to justify the extension of the present report to include the preparation of such diagrams. While the preceding discussion of these diagrams has applied especially to those of Plates I-IV adapted to metric measures, the same general remarks apply equally well to those of Plates V-VIII adapted to English measures. The scales of these indicate as follows: V in miles per hour. Nin r. p. m. D in feet. P in horsepower. H in feet. C_1 , C_2 , C_3 nondimensional as in Plates I-IV. Proportions and scales.—A nomographic diagram such as that of Plate I for the solution of an equation such as (16) may be infinitely varied in proportion and in the scale units employed, all however, so related as to fulfill the basic conditions required for the solution. The particular proportions and scales employed in Plates I-VIII have been chosen primarily in such manner as to give a fairly equable distribution of axes over the diagram, combined with the ranges of values chosen for the different variables. In case it should be desired to lay down any of these diagrams larger or smaller than those represented in plates I . . . VIII, or covering different ranges of values, the following method may be followed: TABLE IV.—Spacing of axes. PLATES. | I, V. | II, VL | ш, уп. | 17, VIII. | |---|---|--------|---| | D0.000
H1.977
N4.440
Y10.989
G15.299
P20.000 | C- 0.000
H. 2.594
V. 4.839
Y 7.215
Y 11.483
D 15.927
P 50.000 | G | X0.000
Y4483
Y8.895
D18.133
S20.000 | The spacing of the successive axes is given in Table IV. In the originals from which Plates I...VIII were reproduced, the unit was 1 inch. This unit may be similarly taken at any value whatever, thus giving diagrams with spacings always in the same proportions as those of Plates I...VIII, but of any actual size as may be desired. Next we must consider the mid values; that is, the values lying on a single continuous straight line drawn through the center of the field covered by the diagram. These values are given in Table V each in terms of the special unit appropriate to the quantity in question. TABLE V .- Mid values. PLATES. | L. | ٧. | п. | VI. | ш. | VII. | IV. | VIII. | |---|----------------------------------|---|--|--------------------------|---------------------------------------|----------------------------------|-----------------------------| | D
2.8
H 4,800
N 1,500
G0.0547
P 184 | 15,100
1,500
0.0615
184 | 0.441
H. 4,600
V. 122
D. 2.6
P. 154 | 0. 452
15, 100
82
8. 5
154 | Cy1. 989
V1. 134
H | 2.006
77
15,100
160
1,500 | Z0.556
V120
D2.6
K1,500 | 0.552
80
8.5
1,500 | Next, for the scale subdivisions, there is, for each axis, a factor f as defined by the equation $$a_2-a_1=f \log a_2/a_1$$ where (a_1-a_1) = distance, in terms of any arbitrary unit, between graduations for values a_2 and a_1 $(a_2>a_1)$. These factors f are given under the appropriate heading in Table VI. They are independent of the system of measures employed and are therefore the same for both metric and English measures. It will, of course, be understood that the unit of measure employed must be the same throughout any one diagram. TABLE VI.—Values of factors f. PLATES. | I, V. | II, VI. | ш, уп. | IV, VIII. | |---------|----------|-----------|-----------| | D18. 33 | C. 3.080 | C. 1.883 | X | | H16.00 | H 16.000 | V. 8.603 | | | N12.570 | V 9.091 | H. 16.000 | | | C7.651 | D 16.00 | P. 5.83 | | | P6285 | P 5.888 | W. 11.63 | | To fix the ideas, take Plate I, axis of D. The mid value is 2.8 (metric). The distance to the graduation for 2 (meters) will then be measured by 18.33 log. 1.4=2.678. This may then be laid down to any convenient unit, having in view the size of diagram permissible and the range of values desired. If there should be reason for extending the diagram to include, say, values of 1 and 10, the distance from 2.8 to 1 would be measured by 18.33 log. 2.8 = 8.197, and, again, the distance from 1 to 0 would be measured by 18.33 log. 10 = 18.33. Instead of using factors as given in Table VI with a unit adapted to the size of diagram desired, a fixed unit such as I cm. or I inch may be adopted, and we may multiply or divide the series of factors in Table VI by any coefficient at will, thus giving various series of numbers, but always in the proportion of those in the table. Thus, by way of illustration, in Plate I, axis D, the total range is from about 1.875 to about 4.182. The log. of the ratio of these two numbers is 0.3483, and with a unit of 1 cm. and the factor 18.33 as in Table VI the total length of this axis would equal 6.384 cm. By taking a unit of 5 cm. or otherwise by using a factor $5 \times \overline{18.33} = 91.65$, the over-all length would become 31.92 cm. In this manner, then, the graduations on any axis may be laid out according to convenience. Obviously the same unit must be used throughout for any one diagram. If for any reason it should be desired to subdivide the graduations on Plates I . . . VIII as printed, or to extend them to somewhat higher or lower limits, the following steps may be taken: - (1) Measure with scale the linear distance between two convenient numbers such as 1 and 5 or 1 and 10 or any other convenient pair, taking them, however, in such manner as to include a considerable part of the scale length. - (2) Take the log. of the ratio of the two numbers and divide it into the distance. The quotient will establish the factor f for the particular unit of measure employed and for the plate as actually printed. This factor f may then be used in manner as indicated above to determine the distance between the graduations for any two numbers on the scale as desired. The scales for altitude require somewhat different treatment. TABLE VIL.—Relation between altitude and density. | Altitude
(meters). | Kg. per cu-
bic meter. | Altitude
(feet). | Pounds per cubic foot. | |--|---|---|------------------------| | 000
\$000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,0 | 1.214 1.155 1.009 1.045 905 905 901 987 887 778 778 689 880 880 880 |
1000
1000
1000
1000
1000
1000
1000
100 | 0. 6788 | Table VII gives the relations employed between altitude and density in both metric and English measures. As previously noted, the actual quantity involved in the computation is density \triangle , but for convenience this is represented on the diagram by altitude H. The factor f as given in Table VI is for density. Hence, in order to determine the distance between the graduations for any two values of the altitude, we may proceed as follows: - (1) Convert the two values of H into values of Δ through Table VII by interpolation, or graphically by curves plotted from these tables. - (2) Then divide the larger value of \triangle by the smaller, find the log. of the ratio, multiply by the factor f, and the product will give the distance desired. TABLE VIII. Efficiency. 0.343 -414 -479 -587 -585 -667 -701 -750 -763 -770 -782 -783 -780 -780 -780 | PROPELLER NO. L. | |------------------| |------------------| C2 11.49 5.940 3.482 2.213 1.487 1.040 .7505 .5530 .4144 .3143 .1440 .1115 .0984 .0063 287. 3 95. 03 88. 70 18. 06 9. 295 5. 138 3. 00* 002 7440 4909 .3300 .2250 .1543 1.828 1.151 σ_{i} 0.0019 .0023 .0040 .0040 .0062 .0043 . 0920 . 0995 . 0863 . 0825 . 0783 .0787 .0685 .0530 .0570 ŔD 0.20 .26 .30 .35 .40 .55 .60 .65 .70 .75 .84 .90 | V
ND | C _i | C _k | G _k | Efficiency. | |--|---|--|--|---| | 0.20
-25
-30
-30
-43
-43
-45
-50
-60
-65
-77
-80
-95 | 0. 1065
1007
1065
1065
1065
1045
1024
0901
0901
0901
0728
0728
0728
0728
0803
0803 | 18. 81
6. 928
8. 953
2. 945
1. 661
1. 147
- 8162
- 8947
- 4393
- 3822
- 2470
- 1368
- 1416
- 9613
- 0613 | 332. 8
100. 3
41. 95
42. 95
10. 32
5. 655
3. 277
1. 990
1. 222
7700
. 5040
. 3321
. 2212
. 1455
. 1004
. 0579 | 0.332
-404
-472
-563
-585
-585
-582
-574
-708
-785
-781
-781
-781
-787
-787
-787 | PROPELLER NO. 2. TABLE VIII—Continued. | PR | OP | ELI | ER | NO. | 8. | |----|-----------|------------|----|-----|----| |----|-----------|------------|----|-----|----| PROPELLER NO. 4. | | T | | | | | | | | | | |---|--|--|--|--|----------------|---|---|---|--|---| | ND
ND | <i>o</i> ₁ | C ₃ | · Ca, | Efficiency. | | ¥ | C ₁ | į Ca | G _i | Efficiency. | | 0. 20
. 25
. 30
. 40
. 45
. 50
. 55
. 77
. 80
. 85
. 90
. 90 | 0.0849
.0859
.0870
.0870
.0870
.0880
.0890
.0846
.0825
.0802
.0770
.0773
.0802
.0802
.0802 | 10. 60
5. 50
8. 222
2. 046
1. 375
9048
9076
5.588
9013
9004
2238
1. 1235
1. 12 | 265. 0
87. 97
85. 80
16. 70
8. 594
4. 764
2. 791
1. 709
1. 087
- 4772
- 4772
- 2288
- 1542
- 1085
- 0780 | 0. 358
.425
.487
.544
.504
.635
.679
.713
.744
.768
.788
.803
.809
.809
.809 | | Table Steel | 0. 1032
1035
1035
1035
1030
1016
0994
0927
0927
0841
0770
0773
0945
0950 | 6. 605
8. 833
9. 414
1. 609
1. 114
7953
5788
4282
3297
9.452
1.1573
1.1083
0.0909 | 105, 7 42, 59 19, 71 10, 05 5, 502 3, 182 1, 913 1, 102 7639 5004 3330 2034 1,499 .0999 | 0. 410
- 476
- 582
- 583
- 689
- 689
- 784
- 784
- 786
- 777
- 786
- 781 | | 1.00 | .0498 | .0498 | .0496 | .752 |
 | | | | j. | | r | Г | OPELLER | No. 8. | , | r . | | PE | OPELLER | No. 6. | | | 0.20
.35
.30
.35
.40
.45
.50
.50
.60
.70 | 0. 0710
0713
0713
0719
0708
0698
0688
0661
0633
0601
0636
0636 | 8. 875
4. 563
5. 687
1. 6615
1. 001
7497
5290
3806
2783
2061
1.834
1150 | 231. 9 73. 02 23. 30 13. 48 6. 819 8. 702 2. 116 1. 258 - 7728 - 4570 - 3131 | 0. 388
-461
-525
-885
-630
-670
-702
-726
-745
-763
-743
-712 | | 0.99
200
200
200
200
200
200
200
200
200
2 | 0. 0771
0762
0780
0736
0717
0990
0856
0815
0859
0620
0486 | 9. 688
4. 877
2. 778
1. 717
1. 1905
- 7874
- 5941
- 3696
- 2634
- 1884
- 1859 | 941. 0
78. 05
30. 87
14. 02
7. 003
8. 740
9. 006
1, 229
. 7315
. 4453
. 2773 | 0. 382
- 451
- 530
- 586
- 576
- 710
- 710
- 744
- 735
- 705 | | | PB | OPELLER | No. 7. | | | • | PR | OPELLER | No. 8. | | | 0.20
.25
.30
.35
.40
.45
.50
.55
.60
.68
.70
.78 | 0. 0883
0.0585
0686
0680
0680
0697
0698
0698
0698
0658
0658
0658 | 8. 825
4. 891
2. 541
1. 888
1. 042
7133
. 5009
. 3606
. 2630
. 1945
. 1440
. 1074 | 213. 1
70. 26
28. 24
12. 95
6. 513
3. 518
2. 004
1. 192
. 7300
. 4504
. 2039
. 1910 | 0. 395
473
- 473
- 586
- 587
- 680
- 695
- 730
- 735
- 772
- 787
- 787 | | 24424444
244244
244244
24444
2444
2444 | 0. 0783
. 0726
. 0717
. 0700
. 0877
. 0866
. 0806
. 0806
. 0804
. 0817
. 0420
. 0421
. 0888 | 9. 163
4. 647
2. 655
1. 633
1. 658
- 7060
4840
- 2393
1713
1228
- 0867 | 229, 1
74, 76
29, 50
12, 33
6, 612
5, 496
1, 930
1, 130
6547
4082
2806
1842 | 0. 385
.453
.528
.530
.634
.675
.706
.736
.785
.787
.787 | | | PE | OPELLER | No. 9. | · | . ' | \ <u></u> | PRO | PELLER 1 | ło. 10. | - | | 0.30
.25
.30
.35
.40
.45
.50
.55 | 0. 0455
. 0449
. 0439
. 0423
. 0405
. 0883
. 0889
. 0845
. 0810
. 0888 | 5. 688
2. 874
1. 626
. 6828
. 4204
. 2872
. 2013
. 1485
. 1080 | 142, 2
45, 98
18, 07
8, 055
3, 955
2, 075
1, 149
. 3965
. 2438 | 0. 419
- 426
- 501
- 519
- 539
- 683
- 694
- 687
- 588
- 459 | | 0.30
25
30
35
40
45
50 | 0. 0457
. 0478
. 0458
. 0457
. 0490
. 0376
. 0387
. 0383 | 6. 087
2. 027
1. 656
1. 019
. 6190
. 4127
. 2696
. 1761 | 1.62, 2
48, 44
18, 85
8, 322
8, 994
2, 038
1, 075
. 583 | 0.421
- 505
- 572
- 623
- 657
- 970
- 659
- 614 | | ` | PR | OPELLER 1 | ¥0. 11. | 1 | | . #15 | P R O | PELLER N | 10. 12. | • | | 0. 20
. 26
. 30
. 35
. 40
. 45
. 50
. 54 | 0.0451
.0446
.0440
.0429
.0417
.0400
.0878
.0350
.0319 | 5. 638
2. 855
1. 630
1. 000
. 6515
. 4390
. 3024
. 2104
. 1477 | 141.0
45.67
18.11
8.164
4.073
2.168
1.210
.6954
.4108 | 0. 484
. 822
. 890
. 644
. 683
. 704
. 707
. 693
. 644 | | 0. 20
25
30
35
40
46
50
55 | 0.0471
.0464
.0458
.0436
.0412
.0379
.0340
.0397 | 5.888
2.970
1.678
1.017
- 6487
- 4160
- 2720
- 1785 | 147. 2
47. 52
18. 54
8. 302
4. 028
2. 055
1. 038
. 590 | 0. 426
. 606
. 671
. 622
. 656
. 609
. 055
. 628 | | | | | | | | | | | | | # TABLE VIII—Continued. | | PRO | PELLER N | 0. 12. | | | | PRO | PELLER 1 | 10. 14. | | |---|---|--|---|---|---|---|---|--|--|--| | V
ND | C ₁ | `C2 | G _i | Rifleiency. | | V
ND | C ₁ | O ₂ | G | Efficiency. | | 0. 20
- 36
- 30
- 45
- 40
- 46
- 56
- 60
- 65
- 70
- 75
- 85
- 80
- 85
- 90
- 85 | 0.0907
.0920
.0928
.0928
.0938
.0930
.0916
.0985
.0985
.0745
.0745
.0708
.0960
.0960 | 11.34
5.899
2.457
2.176
1.459
1.021
7239
5880
4014
3041
2318
1283
1075
0837
0857 | 268. 5 - 94. 34
38. 19
17. 76
9. 120
5. 042
1. 778
1. 115
- 7197
- 4781
- 1163
- 1163
- 1163
- 1163
- 1163
- 1163
- 1163 | 0.231
.404
.429
.537
.530
.636
.669
.705
.786
.786
.791
.791
.795
.795
.795 | | 0.28
.30
.35
.45
.50
.50
.50
.70
.78
.78
.55
.90 | 0.1100
.1100
.1007
.1085
.1041
.1007
.0966
.0916
.0800
.0797
.0797
.0662
.0886
.0807 | 7. 041
4.073
2.589
1.696
1.169
.8329
.0083
.4472
.8388
.2508
.11428
.1078
.0804
.0891 | 112.7
45.25
20.89
10.60
5.773
3.332
2.001
1.542
.785
.8119
.3558
.201
.1492
.0993
.0055 | 0. 402
- 466
- 524
- 575
- 520
- 560
- 598
- 730
- 775
- 775
- 778
- 778 | | • | PR | OPELLER | NO. 15. | | | | PR | OPELLER | NO. 16. | | | 0. 20
. 25
. 30
. 40
. 45
. 50
. 55
. 60
. 65
. 70
. 75
. 85
. 90
. 85 | 0.0887
.0871
.0858
.0900
.0908
.0902
.0857
.0856
.0800
.0719
.0719
.0719
.0671 | 10.71
5.575
3.299
2.099
1.419
.9938
.7317
.8832
.4005
.2045
.2333
.1604
.1404
.1404
.0833
.0853 | 267.8
89, 21
26, 55
17, 14
8, 570
4, 523
1, 176
1, 176
4, 750
4, 750
1, 112
1, 720
1, 120
1, |
0.341
-413
-475
-581
-585
-684
-720
-771
-789
-771
-789
-804
-802
-790
-771 | | 0.25
.30
.35
.40
.45
.50
.55
.90
.77
.85
.85
.90 | 0.1029
1030
1026
1016
1010
.0970
.0980
.0915
.0876
.0829
.0775
.0545
.0870
.0454 | 6.885 3.814 2.303 1.887 1.007 -7833 -8710 -4238 -3190 -2417 -1537 -1540 -1056 -0782 -0865 | 105.4
42.28
19.54
9.920
5.418
3.133
1.888
1.177
-7550
-4933
3.286
-2187
-1460
0.0955
-0626 | 0. 417
- 478
- 585
- 587
- 682
- 678
- 711
- 745
- 771
- 791
- 801
- 801
- 803
- 774
- 781 | | | PR | OPELLER I | NO. 17. | | • | | PB | OPELLER | NO. 18. | | | 0.20
.25
.30
.35
.40
.45
.50
.55
.60
.77 | 0.0685
.0687
.0685
.0694
.0642
.0612
.0613
.0681
.0645
.0465 | 8. 568
4. 397
2. 587
1. 586
1. 087
- 4905
- 3402
- 3402
- 3402
- 3403
1. 1849
- 1. 1856
- 1. 1000 | 214. 1
70. 25
28. 19
12. 95
6. 484
2. 490
1. 962
1. 154
. 7010
. 4362
. 1778 | 0. 374
. 458
. 520
. 578
. 628
. 628
. 620
. 710
. 740
. 740
. 759
. 759 | | 0.20
.35
.30
.35
.40
.45
.50
.55
.60 | G. 0749
- 0738
- 0727
- 0706
- 0680
- 0647
- 0607
- 0864
- 0817
- 0469
- 0418 | 9.275
4.734
2.693
1.647
1.069
-7102
4857
-3890
-2993
-1708
-1219 | 221. 9
75. 58
29. 92
13. 45
6. 644
3. 507
1. 943
1. 121
.6847
.4042
.2458 | 0. 370
.445
.515
.576
.630
677
.717
.748
.762
.788
.728 | | · | PR | OPELLER : | NO. 19. | <u>. </u> | • | | PR | OPELLER | NO. 20. | | | 0. 20
- 25
- 30
- 35
- 40
- 45
- 50
- 55
- 60
- 65
- 70 | 0.0614
.0611
.0609
.0601
.0839
.0874
.0655
.0832
.0804
.0474 | 7. 678
8. 911
2. 255
1. 402
.9203
.6300
.4440
.3198
.2398
.1736
.1374 | 191. 9
62. 58
25. 06
11. 45
8. 752
8. 111
1. 776
1. 057
6480
4085 | 0.334
-463
-531
-533
-647
-694
-790
-770
-777
-779
-778 | | 0.20
.25
.30
.35
.40
.45
.50
.50
.66
.70 | 0.0761
.0754
.0754
.0701
.0701
.0704
.0639
.0606
.0656
.0454
.0891 | 9. 514
4. 526
2. 748
1. 689
1. 005
- 7398
- 5112
- 3606
- 2574
- 1850
- 1224
- 0027 | 287. 8
77. 22
80. 53
13. 79
6. 844
8. 684
2. 048
1. 192
71.60
4878
2702
1648 | 0.383
.486
.519
.577
.629
.674
.714
.745
.765
.772
.767
.713 | | | PR | OPELLER | NO. 11. | | _ | | PI | OPELLER | NO. 22. | | | 0.20
.25
.30
.35
.40
.45
.50
.55 | 0. 0488
- 0458
- 0444
- 0425
- 0425
- 0375
- 0346
- 0317
- 0286 | 8.700
9.912
1.644
.9914
.6281
.4115
.2768
.1905 | 142.5
46.59
18.27
8.094
8.926
2.033
1.107
-0297
.8678 | 0.413
.495
.503
.620
.684
.697
.704
.678 | | 0.90
.25
.30
.35
.40
.45
.50 | 0.0479
-0472
-0455
-0435
-0408
-0309
-0331
-0290 | 8. 988
3.021
1.685
1.010
-6297
-4050
-2643
-1742 | 149.7
48.34
18.72
2.245
2.995
2.000
1.059
.5761 | 0,412
-400
-556
-005
-643
-660
-641
-563 | | | PR | OPELLER 1 | ¥0. 28. | TABLE VII | ı—∪ | ondinued. | | PELLER N | io. 34. | | , | |---|---|--|--|--|-----|---|---|--
---|--|----| | V
ND | · C1 | , G | O ₈ | Efficiency. | | V
MD | G | C ₂ | G _s | Efficiency. | | | 0.20
.26
.30
.35
.40
.45
.50 | 0.0418
.0410
.0408
.0390
.0373
.0356
.0335
.0311 | 5. 163
2. 654
1. 493
. 9096
. 8628
. 9907
. 2680
. 1850
. 1810 | 120, 1
41, 99
16, 59
7, 426
3, 643
1, 930
1, 072
6178
3639 | . 0, 425
. 507
. 577
. 633
. 673
. 695
. 696
. 671
. 610 | | 0.20
- 25
- 30
- 35
- 45
- 45
- 45
- 55 | 0.0454
.0144
.0427
.0427
.0378
.0378
.0310
.0271 | 5. 678
2. 842
1. 581
. 9424
. 5906
. 3787
. 2450
. 1629 | 141. 9
45. 47
17. 57
7. 592
3. 691
1. 870
. 5354 | 0. 429
- 510
- 576
- 528
- 623
- 570
- 616 | | | | PRO | PELLER N | TO. 25. | | | · · · | PRO | PELLER N | 10. 26. | | | | G. 25
. 20
. 25
. 40
. 45
. 50
. 55
. 70
. 75
. 80
. 80
. 80
. 80
. 80
. 80 | 0. 1128
1140
1157
1168
1169
1163
1163
1163
1163
1026
1026
1026
1026
0081
0080
0072 | 7. 187
4. 222
2. 669
1. 828
1. 293
6900
6813
4002
2432
1916
1196
0940 | 115. 0 44. 93 29. 04 11. 41 6. 338 8. 718 2. 981 1. 448 9973 6343 4324 2. 2994 1. 2995 1. 1472 | 0, \$70
-433
-444
-546
-594
-535
-701
-727
-744
-785
-785
-785
-705 | | | 0. 1182
1183
1181
1176
1163
1163
1165
1020
1020
1020
1020
1020
1020
1020
102 | 7. 585
4. 352
2. 756
1. 837
1. 275
9027
9630
4931
3715
2837
2173
1173
11300
11003 | 131.05
43.69
22.49
11.48
6.304
3.639
1.92
1.370
5792
5792
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1.370
1. | 0. 390
455
514
510
651
651
716
778
778
778
778
778
779
742
706 | | | | PR | OPELLER 1 | ¥0. 27. | | | | PR | OPELLER 1 | ¥0. 28. | | | | 0. 25
. 30
. 35
. 40
. 45
. 50
. 65
. 65
. 70
. 75
. 80
. 85
. 90 | 0.0900
-1004
-1016
-1017
-1083
-1083
-1022
-1008
-0975
-0940
-0864
-0804
-07751
-0891 | 6. 336
2. 718
3. 870
1. 606
1. 134
5255
6143
4544
2153
2741
2153
1608
1309
1020
0806 | 101. 4 41. 81 19. 85 10. 03 8. 600 8. 905 1. 290 1. 290 8. 405 8. 5594 8. 7792 2. 2006 1. 812 1. 1322 0. 0893 | 0. 415
- 478
- 830
- 578
- 630
- 659
- 991
- 719
- 774
- 789
- 789
- 772
- 787
- 745
- 707 | | 20000000000000000000000000000000000000 | 0.
1105
1121
1134
1134
1137
1103
11075
10037
10037
10037
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
10030
100 | 7. 072
4. 162
3. 645
1. 751
1. 761
1. 245
893
6630
4976
2891
2891
1496
1296
0993 | 113, 17
49, 13
59, 76
11, 13
6, 164
8, 597
9, 192
1, 382
1, 383
8, 583
1, 583
1, 792
1, 203
1, 203
1 | 0.498
.493
.517
.505
.608
.615
.718
.718
.741
.753
.774
.774 | | | | PR | OPELLER | NO. 29. | ' | _ | · -• · | PR | OPELLER | NO. 20. | | | | 0. 20
. 25
. 30
. 35
. 40
. 45
. 50
. 55
. 60
. 70
. 75 | 0. 0873
. 0890
. 0901
. 0904
. 0904
. 0835
- 0861
. 0836
. 0788
. 0740
. 0905
. 0648 | 10. 91
5. 696
3. 337
2. 113
1. 4125
9747
6389
4965
.3625
.2095
.2027
.1536 | 272.8
91.14
87.06
17.26
8.828
4.813
2.766
1.641
1.007
6878
4187
2781 | 0. 248
. 424
. 422
. 551
. 600
. 644
. 675
. 770
. 714
. 717
. 709
. 680 | | 2022
2022
2022
2022
2022
2022
2022
202 | 0. 0650
0854
0857
0845
0826
07797
07789
0773
0655
0614
0880 | 10. 86
5. 530
3. 174
1. 971
1. 291
. 291
. 4285
. 3079
. 3236
. 1633 | 271. 8
58. 49
35. 27
10. 09
4. 220
2. 429
1. 416
.8554
.8292
.8333 | 0.365
433
426
563
602
645
680
706
721
719
691 | | | | PR | OPELLER | NO. 81. | | | | PR | OPELLER | | · ·· · · · · · · · · · · · · · · · · | ٠. | | 0. 20
.25
.80
.35
.40
.45
.50
.65
.70
.75 | 0. 0783
. 0792
. 0799
. 0799
. 0791
. 0776
. 0724
. 0724
. 0889
. 0650
. 0604 | 9, 788
5, 009
1, 909
1, 804
1, 226
8518
6033
4558
3, 190
2867
1, 1761
1, 1818
0, 0986 | 244. 7
81. 11
82. 88
-18. 22
7. 7725
4. 207
2. 413
1. 441
8861
. 5902
. 3594
. 2843
. 1841 | 0.371
-448
-309
-561
-907
-649
-634
-715
-734
-738
-737
-641 | | 0.20
380
380
384
49
49
58
60
68
70 | 0. 0838 | 10. 35
5. 354
3. 126
1. 952
1. 289
8748
6081
4308
3102
2261
1065 | 268. 8
85. 83
34. 73
16. 02
8. 056
4. 320
2. 432
1. 423
8018
8351
8398 | 0.367
.440
.504
.500
.610
.655
.694
.722
.739
.737 | | A. F TABLE VIII—Continued. | PROPELLE | 3 NO. 33. | |----------|-----------| |----------|-----------| PROPELLER NO. 34. | | | PELLER I | 10. 33. | | | | | PELLER N | U. 34. | | |---|---|--|--|--|---|---|--|--|--|--| | V
ND | C _I | G ₁ | . C ₂ | Efficiency. | | . NO | C ₁ | C ₂ | G _i | Riffelency. | | 0.20
.25
.30
.35
.40
.45
.50
.55 | 0. 0579
. 0589
. 0588
. 0577
. 0680
. 0634
. 0608
. 0463
. 0428 | 7. 238
2. 770
2. 178
1. 346
. 5760
. 5851
. 4025
. 2813
. 1981 | 180. 95
60. 32
24. 20
10. 99
5. 469
2. 895
1. 610
. 9298
. 5504 | C.367
-473
F.535
-535
-634 J.
-631 M.
-605 M. |
 0.20
• 25
• 35
• 35
• 40
• 45
• 50 | 0.0540
.0535
.0524
.0805
.0478
.0442
.0401
.0859 | 6.750
2.424
1.941
1.180
.7463
.4861
.8209
.2182 | 108. 8
54. 79
21. 57
9. 633
4. 669
2. 396
1. 284
. 7113 | 0.410
.679
.837
.880
.606
.613
.890
.827 | | | PRO | PELLER N | To. 3 5. | · | | | PR | OPELLER | No. 36. | | | 0,20
.25
.30
.35
.40
.45
.50 | 0. 0587
. 0560
. 0560
. 0580
. 0831
. 0505
. 0477 | 6.963
2.584
2.074
1.283
8297
5542
-3817
.2687 | 174. 1
87. 34
22. 04
10. 47
5. 186
2. 787
1. 527
. 8881 | 0.404
-431
-541
-581
-627
-645
-643 | | 0.20
.25
.30
.35
.40
.45 | 0.0530
-0579
-0571
-0554
-0634
-0435
-0446
-0898 | 7. 250
8. 706
9. 115
1. 292
8188
5356
8569
2892 | 181. 2
59. 30
23. 50
10. 55
5. 117
2. 645
1. 428
. 7907 | 6.400
.471
.811
.576
.619
.628
.622
.581 | | | PR | OPELLER : | No. 3 7. | | | _ | PR | OPELLER : | No. 38. | | | 0.25
-20
-25
-45
-45
-55
-60
-75
-76
-80
-85
-90
-95 | 0. 1130
1152
1179
1179
1188
1187
1187
1180
1092
1001
0954
0958
0819
0777 | 7, 233
4, 257
2, 790
1, 853
1, 293
9257
6792
5056
3, 827
2936
2262
11, 1266
1, 1066
1, | 115. 7
47. 41
22. 45
11. 58
6. 585
3. 703
3. 245
1. 404
9058
5992
4021
1891
11816 | 0.371
-452
-490
-544
-593
-635
-672
-702
-728
-745
-751
-751
-751
-710 | • | 0. 25
. 30
. 35
. 40
. 45
. 50
. 55
. 50
. 70
. 70
. 90
. 85 | 0. 1199
1217
1223
1223
1193
1195
1118
1054
1094
0949
0855
0818 | 7. 674
4. 507
2. 853
1. 894
1. 305
9240
6890
4925
36767
2093
1898
1217 | 122.8
50.08
22.29
11.84
6.445
2.606
2.121
1.308
.8093
.8093
.8093
.8093
.8093
.8094 | 0.850
.445
.875
.850
.510
.550
.689
.721
.745
.760
.761
.747 | | | PR | OPELLER | No. 39. | <u> </u> | | | PRO | PELLER N | D. 40. | | | 0.25
-30
-35
-40
-45
-50
-56
-65
-70
-75
-00
-88
-90
-95 | 0.0996
1011
1027
1039
1043
1099
1028
1018
10990
0990
0920
0924
0821
0702 | 6.275 3.745 3.745 3.825 1.622 1.145 6179 4590 2606 2709 2181 1707 1387 1043 0819 | 102.0
41.61
19.65
10.14
8.655
2.325
2.042
1.302
8.832
8773
2.8777
2.867
1.800
1.994 | 0. 414
. 478
. 683
. 582
. 625
. 661
. 692
. 730
. 741
. 787
. 770
. 770
. 774
. 740
. 699 | | 0. 25
. 30
. 35
. 40
. 45
. 50
. 65
. 70
. 77
. 80
. 85
. 90 | 0. 1189
1161
1162
1163
1163
1163
11991
1090
1090
1090
1090
1090
1090
10 | 7, 290
4, 263
2, 713
1, 814
1, 290
9000
6858
5861
2, 2786
2093
1, 1004
1, 1223
0, 0044 | 115.6
47.36
29.15
11.34
6.223
3.60
2.168
1.628
-8529
-5623
-7707
-1165 | 0, 289
-453
-501
-601
-601
-625
-718
-741
-769
-765
-765
-783
-722 | | · | PR | OPELLER | No. 41. | · '······ ' | | | PR | OPELLER | No. 42. | | | 0,20
-25
-30
-35
-40
-45
-50
-55
-60
-65
-70 | 0.0856
.0890
.0891
.0892
.0877
.0847
.0847
.0716
.0654
.0613
.0539 | 10, 827
5, 632
2, 200
2, 081
1, 387
9297
6457
4586
3315
2418
1788
1825 | 270. 6
90. 12
36. 67
16. 99
8. 544
4. 591
- 2. 582
1. 516
- 9209
- 5722
- 3649
- 2358 | 0.347
-419
-490
-890
-889
-655
-674
-704
-723
-725
-700
-662 | | 0.20
.25
.30
.85
.40
.45
.50
.85
.60
.65 | 0.0868
08775
08570
08570
0878
08646
0809
0777
0720
0668
0811
0868 | 10. 79
5. 600
2. 036
1. 222
. 3890
. 6136
. 4223
. 3092
. 2225
. 1612 | 269. 5
89. 61
36. 22
16. 62
8. 255
4. 395
2. 454
1. 431
.8392
.5295
.3290 | 0. 245
.418
.420
.550
.003
.043
.685
.713
.725
.728
.690 | # TABLE VIII-Continued. | ٠ | PROP! | LLER | NO. | 43. | |---|-------|------|-----|-----| |---|-------|------|-----|-----| PROPELLER NO. 44. | | | | | | . | | | | | | |---|--|--|---|--|----------|---|--
---|--|---| | W MD | · C1 | C ₁ | C ₁ | Efficiency. | | y | C ₁ | C ₁ | C _b | Efficiency. | | 0.20
.25
.30
.35
.40
.45
.55
.60
.65 | 0.0770
0780
0792
0792
0785
0778
0778
0751
0751
0752
0690
0658 | 9. 625
4. 992
2. 994
1. 854
1. 230
8485
6009
4346
8194
2878
1785
1361 | 240, 6
70, 88
82, 60
15, 14
7, 687
4, 190
2, 494
1, 436
8874
5874
2402 | 0.871
.448
.510
.565
.014
.656
.690
.717
.781
.711
.866 | | 0. 25
25
25
25
25
25
25
25
25
25
25
25
25
2 | 0, 0831
0838
0838
0838
0837
0776
0778
0784
0647
0647
0548 | 10. 26
5. 23.1
2. 103
1. 93.1
1. 26.1
. 35.17
. 35.17
. 20.95
. 41.71
. 20.95
. 21.81
. 15.98 | 254. 5
85. 30
84. 45
15. 77
7. 882
4. 205
2. 355
1. 879
. 8320
. 5162
. 3261 | 0.389
.434
.500
.555
.604
.647
.647
.701
.707
.707
.006 | | | PR | OPELLER 1 | NO. 48. | | | - | PR | OPELLER I | NO. 46. | | | 0, 20
. 25
. 30
. 35
. 40
. 45
. 50 | 0. 0563
- 0564
- 0561
- 0551
- 0335
- 0516
- 0492
- 0465 | 7. 068
3. 610
2. 078
1. 285
. 8359
. 5668
. 3086
. 2795 | 176. 0
57. 76
23. 09
10. 49
2. 797
1. 574
. 9288 | 0. 400
- 674
- 535
- 578
- 602
- 806
- 861
- 546 | ļ | 0.50
26
20
35
40
45
60
86 | 0. 0507
.0502
.0539
.0568
.0539
.0501
.0451 | 7. 588
3. 853
2. 181
1. 325
. 5490
. 3698
. 2494 | 189. 7
61. 65
24. 24
10. 82
5. 263
2. 716
1. 476
. 8244 | - 0, 399
- 472
- 584
- 581
- 609
- 615
- 590
- 530 | | | PR | OPELLER I | NO. 47. | ' | | | PR | OPELLER 1 | NO. 48. | | | 0. 20
. 25
. 30
. 35
. 40
. 45
. 50 | 0. 0518
. 0519
. 0515
. 0504
. 0489
. 0466
. 0442
. 0412 | 6. 476
8. 332
1. 907
1. 175
. 7640
. 5115
. 5587
. 3476 | 161. 9
58. 15
21. 19
9. 506
4. 775
2. 536
1. 415
. 8184 | 0. 415
489
.545
.585
.608
.613
.602
.565 | | 0. 20
- 25
- 25
- 40
- 45
- 55 | 0. 0880
. 0567
. 0544
. 0522
. 0428
. 0466
. 0434
. 0400 | 7.000
3.565
2.015
1.217
.7750
.5115
.3472
.2404 | 175. 0
57. 04
22. 39
9. 938
4. 844
2. 526
1. 390 | 0, 402
450
541
583
505
505
579
515 | | | PR | OPELLER 1 | NO. 80. | | · · · • | | PR | OPELLER I | NO. 81. | | | 0. 25
. 30
. 35
. 40
. 55
. 55
. 56
. 70
. 75
. 80
. 85
. 80
. 80
. 90
. 1. 00
1. 10 | 0. 1101
.1114
.1129
.1144
.1159
.1171
.1176
.1170
.1155
.1130
.1005
.1053
.1005
.1053
.1054
.1053
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.1054
.105 | 7. 049 4. 127 2. 653 1. 778 1. 778 1. 273 9569 7068 8417 44906 3395 2566 2087 1629 1394 1025 0811 0639 0600 | 113. 8 45. 85 21. 50 11. 18 6. 281 3. 748 2. 387 1. 506 6730 64315 3214 2285 11808 11808 0811 0580 . 0413 | 0.355
.414
.470
.520
.567
.510
.648
.680
.711
.787
.780
.779
.796
.808
.811
.811 | | 0.35
35
35
35
35
35
35
35
35
35
35
35
35
3 | 0. 1246
1284
1387
1387
1387
1387
1389
1342
1315
1229
1107
1038
0880
0880
0711
0024 | 8. 616
8. 016
8. 179
2. 136
1. 801
1. 801
2. 2066
6089
4.650
2. 3584
2. 2779
2. 163
2. 1630
1. 1037
1. 1037
1. 1037
1. 1034
1. | 197. 9 56. 78 28. 96 12. 35 7. 412 4. 348 2. 967 1. 662 1. 101 - 7814 - 4941 - 3273 - 1239 - 1026 - 1138 - 1388 | 0.
349
-409
-455
-518
-565
-610
-684
-714
-740
-763
-781
-795
-795
-796
-796
-796
-796
-796
-796 | | | PR | OPELLER | NO: 82. | | • . • | · | PR | OPELLER | NO. 88. | | | 0.25
.30
.35
.40
.45
.50
.66
.70
.78
.80
.90
.95
1.00
1.16 | 0.0993
1008
1029
1085
1077
1094
1104
1108
1098
1083
1016
0974
0829
0811
0748
0078 | 6. 355
2. 403
1. 648
1. 183
5733
6635
5130
3140
9696
1985
1188
1188
1188
1188
1014
0611
0646
0696 | 101.7
41.48
19.60
10.30
5.897
8.501
2.194
1.422
9465
8437
4437
3106
21194
1134
9611
0611
0600 | 0. 374
- 438
- 439
- 540
- 554
- 628
- 668
- 704
- 787
- 778
- 778
- 796
- 811
- 823
- 824
- 834
- 830
- 817
- 794 | | 0. 25
.30
.35
.45
.50
.55
.50
.55
.70
.75
.80
.90
.95
1.00
1.10
1.10
1.10 | 0. 1242
1261
1260
1268
1274
1277
1267
1267
1267
1267
1198
11157
1107
1046
0975
0888
0814
0725
0639
0850
0850 | 7. 950 4. 631 2. 940 1. 981 1. 888 1. 018 - 7616 - 8810 4479 4479 4479 - 1838 - 1047 - 0814 - 0826 - 0477 | 127. 2
51. 48
34. 00
12. 38
6. 904
4. 072
2. 518
1. 614
1. 000
-7130
-2877
3878
-3878
1.662
-1190
-0314
-0358
-0391
-0368
-0173 | 0.359
-419
-474
-629
-577
-630
-658
-794
-780
-773
-773
-775
-815
-815
-816
-816
-817
-740
-740
-740 | TABLE VIII-Continued. | PROPELLER NO. 90 | | |------------------|--| | | | | | PR | OPELLER 1 | NO. 90. | | ш.—о | ONTETTUNCE. | PRO | PELLER N | 70. 91. | | |--|--|--|--|---|------|--|--|--|--|---| | MD
MD | O ₁ | C ₂ | O _E | Reflectency. | | V
ND | C ₁ | G ₂ | G _i | Billelency. | | 0.20
.25
.30
.35
.40
.45
.55 | 0. 0500
-0407
-0450
-0474
-0453
-0428
-0398
-0386 | 6.260
8.181
1.811
1.105
.7078
.4698
.3184
.2200 | 185. 2
80. 90
90. 12
9. 025
4. 494
2. 330
1. 274
. 7273 | 0. 425
- 804
- 870
- 631
- 633
- 668
- 665
- 625 | | 0.20
-25
-30
-35
-40
-46
-80
-55 | 0.0518
.0502
.0458
.0454
.0454
.0401
.0358
.0636 | 6.413
3.212
1.800
1.062
-6782
-4401
-9920
-1969 | 160.8
51.41
20.00
8.532
4.229
2.174
1.168
.6475 | 0.430
.508
.571
.520
.681
.555
.532
.570 | | | PR | OPELLER 1 | NO. 92. | | | | PR | OPELLER 1 | | | | 0,20
-25
-35
-40
-45
-55
-55
-56
-70
-75
-80 | 0.0729
.0734
.0737
.0736
.0738
.0732
.0732
.0680
.0681
.0681
.0616
.0616
.0631
.0644 | 9, 118
8, 698
2, 730
1, 717
1, 144
-7024
-5540
-4003
-3009
-2240
-1074
-1289
-0945 | 227.8 91.18 30.32 14.02 7.180 3.914 2.286 1.389 -5309 -3417 -2228 -1427 | 0.775 -451 -451 -523 -525 -527 -710 -724 -749 -755 -725 -728 -664 | | 0.20
-26
-30
-36
-40
-45
-50
-55
-70 | 0.0765
.0760
.0780
.0787
.0719
.0692
.0685
.0618
.0608 | 9. 563
4. 865
2. 778
1. 719
1. 1925
-7896
-2539
-2630
-1875
-1238 | 230. 1
77. 54
30. 86
14. 02
7. 022
8. 761
2. 100
1. 222
. 7306
. 4437
. 2731 | 0.375
-450
-521
-586
-640
-684
-715
-736
-736
-634 | | | PR | OPELLER : | NO. 94. | | • | | PR | OPELLER | NO. 95. | | | 0.25
.30
.35
.45
.55
.66
.70
.89
.89 | 0.0854
.0983
.0987
.0987
.0987
.0987
.0978
.0978
.0940
.0905
.0905
.0916
.0916
.0716
.0716 | 6. 105
3. 585
2. 295
1. 567
7897
5895
4493
2639
2048
1229
1229
0008
0749 | 97. 70
39. 84
18. 67
9. 638
8. 369
1. 946
1. 240
8101
- 5364
- 3641
- 2491
- 1715
- 1192
- 0830 | 0,422
-485
-540
-583
-697
-701
-728
-782
-771
-770
-790
-790
-748 | | 0.25
.30
.35
.40
.45
.50
.55
.66
.70
.75
.90 | 0. 1132
11327
11327
11320
11320
1103
1103
1103
1103
1103
11 | 7. 181
4. 174
2. 623
1. 780
1. 214
- 6329
- 4704
- 2553
- 2671
- 2027
- 1541
1171
- 0883 | 114.9
44.37
21.46
10.94
4.998
3.497
2.092
1.307
5851
5451
1.909
1.909 | 0.300
-455
-315
-316
-359
-316
-359
-355
-751
-761
-761
-772
-773
-778
-778
-778 | | PRO | PRLLER N | O. 98 (ANGI | E DECREA | SED 6°). | • | PBOI | PELLER N | 0 . 96 (ANG L | e decreas | ED 4°). | | 0.25
.30
.36
.40
.45
.50
.55 | 0.0439
.0433
.0421
.0406
.0687
.0366
.0343
.0318 | 2.810
1.604
.9820
.6228
.4347
.2028
.2082
1.472
.1088 | 44.96
17.88
8.016
8.985
2.097
1.171
6817
4090 | 0.471
.583
.581
.615
.618
.628
.826
.525
.896 | | 0.25
.80
.85
.40
.45
.50
.56 | 0. 0514
. 0508
. 0494
. 0574
. 0450
. 0421
. 0339
. 0357
. 0322 | 8, 290
1, 881
1, 182
-7407
-4239
-2358
-2558
-1653
-1178 | 52.64
20.90
9.405
4.630
2.429
1.347
.7728
.4592
.2776 | 0. 455
. 534
. 574
. 619
. 655
. 677
. 673
. 630 | | PRO | PELLER N | 70.96 (STAN | DARD SET | TING). | | PRO | PELLER N | 0.96 (ANGI | E INORRAS | ED 4°). | | 0.25
.30
.45
.30
.50
.50
.55
.70 | 0.0748
.0740
.0727
.0727
.0881
.0815
.0815
.0878
.0887
.0895 | 4.774
2.741
1.696
1.105
7474
.5209
.2076
.2076
.1443
.1069 | 76, 40
30, 45
12, 85
6, 906
2, 691
2, 084
1, 222
7434
4530
9945
1, 1908 | 0. 419
. 489
. 551
. 908
. 555
. 694
. 722
. 740
. 748
. 744
. 716 | | 0.35
-44
-45
-50
-60
-65
-70
-75
-80
-90 | 0.0079
.0070
.0083
.0083
.0083
.0082
.0082
.0077
.0775
.0725
.0073
.0083
.0085 | 2.253 1.515 1.046 7.449 -5404 -3991 -2995 -2990 -1721 -1818 -1011 -0775 -0691 | 18. 64
9. 475
8. 105
9. 980
1. 787
1. 109
-7067
-4512
-2000
-1309
-0687
-0685 | 0.519
.570
.615
.657
.691
.781
.763
.772
.771
.772
.771
.785 | | PELLER N | IO. OBYANGI | JA TNORKAL | | II— | | • | n os čánica | e diggers | ₽ Π 10Φ | | |---
--|--|--|--|--|---|--|--|---|---| | C ₁ | , a, | G _E | Rifficiency. | - | ND | C ₁ | O. SE (ZNO) | G. | Efficiency. | <u>.</u> | | 0.1183
.1189
.1185
.1177
.1179
.1179
.1104
.1003
.1018
.0085
.0011
.0085
.0791 | 1. 948
1. 205
9489
7074
5396
6130
2319
9520
1.968
1.872
1.220
0.996
0.0791 | 11. 55
-0. 445
3.796
2.389
1. 491
-0776
-6570
-4490
-3107
-3276
-1103
-0791 | 0.518
.505
.006
.043
.577
.707
.788
.782
.782
.774
.774
.775
.705
.745 | | 0 4550 85775 9550 950 85115 20 1 1 1 1 | 0.1444
.1487
.1495
.1495
.1494
.1495
.1496
.1496
.1276
.1331
.1278
.1218
.1147
.1073
.0908 | 1. 156
8767
5762
5831
4340
2754
2259
1886
1461
1215
0901
0606
0656 | 4. 620
2. 806
1. 884
1. 262
. 6052
. 6304
. 3099
. 2285
1. 1662
1. 1080
0. 0066
. 0198 | 0. 534
.577
.614
.648
.659
.704
.725
.742
.786
.770
.771
.767
.785 | | | PELLER N | 0. % (Ang i | LE INCREA | SE 16°). | | 1.20 | <u> </u> | l | L | <u> </u> | | | 0.1600
1.627
1.657
1.652
1.702
1.713
1.704
1.652
1.156
1.159
1.159
1.1478
1.412
1.1478
1.412
1.1181 | 0. 0617
7882
6034
4094
4394
2307
1220
1289
1329
1111
0028
0778
0051
0345 | 3.179
2.003
1.428
1.001
.7173
.5228
.3841
.2348
.2128
.1596
.1206
.0918
.0702
.0320
.0417
.0323
.0360 | 0. 533
.574
.610
.644
.670
.694
.713
.728
.741
.780
.788
.764
.762
.762
.764
.762
.7721 | - |
0.85
-70
-90
-90
-1.00
-1.10
-1.10
-1.25
-1.30
-1.40
-1.40
-1.40
-1.40
-1.40
-1.40
-1.40 | 0.1889
.1912
.1942
.1949
.1990
.2005
.1995
.1972
.1997
.1897
.1780
.1780
.1688
.1008
.1642
.1477 | 0. 6880
- 5575
- 4603
- 3846
- 3841
- 2748
- 2289
- 1704
- 1458
- 1347
- 1009
- 0917
- 0978
- 0806
- 0438 | 1. 029 1. 138 2. 8184 2. 6010 4.495 3.8393 2. 8292 2. 1996 1. 1205 2. 043 2. 0587 2. 0666 2. 0372 2. 0286 2. 0296 2. 0296 2. 0396 | 0. 539 - 574 - 605 - 605 - 605 - 601 - 720 - 722 - 742 - 743 - 756 - 756 - 758 - 745 - 719 | | | PR | OPELLER 1 | | , | | ' | PR | OPELLER 1 | TO. 112. | | | | 0. 1234
1236
1241
1262
1262
1263
1264
1268
1218
1229
1334
1334
1322
1323
1326
1327
1327
1327
1327
1327
1327
1327
1327 | 7. 868 4. 578 2. 995 1. 945 1. 945 1. 340 1. 027 7831 6.102 6.800 3.162 2.582 2.1770 1.1443 1.0970 1.0045 0.035 0.035 0.035 | 126. 4 50. 57 22. 63 12. 22 6. 395 4. 103 2. 539 1. 965 1. 146 - 7651 - 5652 - 4085 - 2337 - 2161 - 1899 - 1189 - 0685 - 0497 - 0573 - 0278 - 0278 - 0200 - 0188 | 0. 285
. 310
. 394
. 445
. 495
. 496
. 583
. 623
. 659
. 689
. 718
. 782
. 797
. 810
. 820
. 827
. 829
. 829
. 829
. 829
. 829
. 829
. 821
. 814
. 790 | | | 0. 1647
. 1659
. 1671
. 1685
. 1698
. 1702
. 1692
. 1702
. 1646
. 1611
. 1870
. 1820
. 1834
. 1344
. 1141
. 1049
. 0951
. 0853
. 0753 | 10. 64 0. 145 8. 898 2. 683 1. 894 1. 882 1. 023 7830 0089 4799 3819 3807 2476 2005 1627 1310 0650 0657 0657 | 168. 7 68. 28 81. 83 10. 46 9. 206 5. 448 8. 382 2. 176 1. 441 9796 6790 4798 3425 2.475 1803 1319 0967 0709 0832 0382 | 0. 291
.346
.397
.446
.491
.538
.538
.682
.710
.735
.755
.775
.775
.790
.815
.813
.813 | | | PRO | PELLER N | O. 118. | - | | | PRO | Peller n | | -
 | | | 0, 1209
1221
1287
1290
1290
1290
1394
1380
1385
1400
1387
1288
1240
1185
1194
1195
1059
0090 | 7. 738
4. 523
2. 886
1. 418
1. 056
8128
6900
4052
2304
1220
1220
1240
0644
0672 | 123, 8
50, 25
22, 56
21, 51
6, 937
4, 560
1, 775
1, 202
8331
8331
8357
4413
9059
9247
11940
1093
1093
1093
1093
1093
1093
1093
109 | 0, \$11
.389
.428
.478
.529
.577
.619
.656
.685
.711
.786
.776
.776
.776
.800
.819
.831
.836
.837
.836
.837
.836 | | ###################################### | 0. 1483
. 1476
. 1497
. 1497
. 1838
. 1557
. 1874
. 1888
. 1895
. 1895
. 1896
. 1864
. 1386
. 1396
. 1324
. 1377
. 1049
. 0957
. 0957
. 0955 | 9. 332
3. 457
3. 467
3. 467
1. 688
1. 246
-7363
-5306
-4633
-3750
-3046
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-2465
-24 | 149. 3
80. 75
28. 51
14. 83
8. 336
4. 994
8. 128
2. 042
1. 9406
6666
6660
6780
.3413
.9470
.1792
.1308
.008
.008
.008
.008
.008
.008
.008 | 0.811
.309
.422
.473
.518
.518
.561
.899
.634
.719
.742
.761
.780
.795
.817
.817
.828
.822
.811 | | | | C1 C. 1188 .1189 .1189 .1188 .1197 .1189 .1184 .1001 .0005 .0005 .0791 PELLER N 0. 1600 .1627 .1687 .1682 .1702 .1702 .1703 .1704 .1683 .1704 .1893 .1478 .1191 PR 0. 1224 .1236 .1231 .1282 .1281 .1282 .1281 .1282 .1283 .1277 .1383 .1283 .1270 .1000 .10027 .0850 .0686 PR 0. 1200 .1201 .1200 .1 | C1 | C1 | PELLER NO. 95 (ANGLE INCREASED 8*). C_1 | PELLER NO. 95 (ANGLE INCREASED 8*). C_1 | PELLER NO. 95 (ANGLE INCREASED 8*). C1 | C1 | PELLER NO. 96 (ANGLE INCREASED 8*). PROPELLER NO. 96 (ANGLE INCREASED 18*). PRO | PELLER NO. 88 (ANGLE INCREASED 8"). PROPELLER NO. 88 (ANGLE INCREASED 8"). | PELLER NO. 80 (ANGLE INCREASED 8"). PROPELLER NO. 80 (ANGLE INCREASED 18"). | 7:1 TABLE VIII-Continued. | PROPELLER | NO. | 115. | |-----------|-----|------| |-----------|-----|------| ## PROPELLER NO. 116. | V
ND | Cı | G _i | G _a | Efficiency. | |---|--|---|--|---| | 0. 20
. 25
. 30
. 35
. 40
. 45
. 50
. 55 | 0.0404
.0400
.0394
.0380
.0383
.0334
.0304
.0271
.0236 | 5.050
2.550
1.459
.8563
.5694
.3666
.2432
.1629
.1092 | 126, 2
40, 96
16, 22
7, 236
3, 496
1, 811
9728
5354
3035 | 0. 422
. 506
. 579
. 632
. 674
. 700
. 705
. 681 | | y
RD | O ₁ | O₂ | G, | Rindency. | |---|--|--|--|---| | 0.20
-25
-30
-35
-40
-45
-55
-55
-60
-65
-70
-75 | 0.0686
- 0588
-
0547
- 0538
- 0527
- 0513
- 0466
- 0473
- 0464
- 0404
- 0364
- 0320 | 6.960
8.633
2.036
1.255
.2226
.5531
.3068
.2843
.2042
.1471
.1061
.0768 | 173. 8
55. 53
22. 51
10. 25
5. 147
2. 781
1. 557
. 9393
. 5573
. 3451
. 2185
. 1243 | 0.384
.459
.821
.880
.682
.682
.718
.761
.760
.775
.780 | ## PROPELLER NO. 117. ## PROPELLER No. 118. | 0.20 | 0.0746 | 9. 325 | 233.1 | 0.360 | |--|----------------|------------------|-------------------|----------------| | .30 | .0752
.0760 | 4. 813
2. 815 | 77.02
81.28 | -431
-402 | | .33 | .0786 | 1, 787 | 14.50 | . 547 | | . 40 | .0771 | 1.205 | 7. 531 | . 547
. 504 | | .45 | .0776 | -8518 | 4.207 | . 636 | | .56 | 0771 | . 6217
. 4634 | 2.457
1.582 4. | . 673
. 706 | | .60 | .0757 | . 3505 | .9736 | .787 | | . 63 | .0727 | .2013 | .6967 | .764 | | 25
30
30
44
50
56
57
75
88
80 | .0688
.0689 | . 2006
. 1515 | .4094
.2893 | .782
.795 | | .ao . | .0578 | 1120 | 1764 | .798 | | . 85 | .0512 | .0834 | .1154 | .790 | | .90 | .0443 | .0808 | .0751 | .770 | | . 95 | .0370 | .0432 | .0479 | .724 | | 0.25
.30
.45
.45
.50
.50
.50
.70
.76
.95
1.00
1.10 | 0.0887
.0945
.0959
.0972
.0934
.0939
.1009
.1011
.1000
.0945
.0902
.0933
.0732
.0732
.0732
.0732 | 5. 997
3. 500
2. 237
1. 519
1. 080
-7993
-5055
-4581
-2878
-2918
-2828
-1845
-1469
-1159
-0924
-0729
-0570
-0440
-0335 | 95. 96
98. 89
18. 26
9. 498
8. 333
3. 197
2. 005
1. 300
.5963
.4130
.2887
.2083
.1443
.1024
.0734
.0517
.0864
.0258 | 0.387
.421
.432
.540
.580
.589
.589
.772
.778
.801
.810
.810
.814
.817
.804
.774 | |---|---|--|--|---| |---|---|--|--|---| ## PROPELLER No. 119. # PROPELLER No. 120. | 0.25
-30
-35
-45
-50
-50
-50
-50
-70
-75
-80
-95
1.00
1.10
1.10
1.20
1.20
1.30 | 0.1128
.1130
.1131
.1137
.1137
.1144
.1177
.1195
.1210
.1220
.1221
.1230
.1196
.1197
.1196
.1197
.1197
.1073
.1011
.0035 | 7. 220
4. 185
2. 653
1. 777
1. 255
- 2223
- 6903
- 5449
- 4851
- 3828
- 2235
- 2235
- 1341
- 1125
- 1125
- 1126
- | 115. 5 45. 80 21. 84 11. 11 6. 198 2. 690 2. 218 1. 514 1. 030 7200 5141 5727 2818 2018 1128 1128 1128 0641 0628 0445 0250 0181 | 0.301
.389
.411
.454
.503
.506
.646
.500
.710
.779
.700
.779
.805
.817
.818
.818
.818
.817
.818
.818
.818 | |---|---|---|---|---| |---|---
---|---|---| | 0.20
.25
.20
.35
.45
.40
.50
.55
.65
.70 | 0.0625
.0617
.0605
.0692
.0576
.0554
.0625
.0489
.0447
.0400 | 7.814
8.949
2.341
1.381
.9000
.6061
.4300
.3039
.2069
.1457
.1028 | 198.4
68.19
94.90
11.27
5.625
3.008
1.660
.9714
.5749
.3443
.3088 | 0.362
-440
-508
-570
-623
-567
-701
-728
-731
-716
-677 | |---|---|---|---|---| |---|---|---|---|---| ## PROPELLER No. 121. PROPELLER No. 121. | 0.20 0.0820
.25 .0817
.30 .0812
.35 .0903
.40 .0822
.50 .0825
.50 .0831
.60 .031
.60 .0448
.70 .0407
.78 .0864 | 7.750
3.949
2.367
1.406
.9250
.5311
.4434
.3131
.9255
.1631
.1187
.0853 | 193.8
63.19
26.19
26.19
11.45
5.782
8.117
1.770
1.035
.2360
.2123
.1634 | 0.371
-445
-518
-572
-619
-661
-695
-720
-727
-739
-714
-641 | |--|--|--|---| |--|--|--|---| | 0.20
-25
-20
-30
-46
-46
-48
-80
-85
-90
-55 | 0. 0659
.0856
.0851
.0845
.0835
.0828
.0804
.0882
.0892
.0892
.0492 | 8. 228
4. 199
2. 411
1. 504
. 9022
. 6823
. 4823
. 3498
. 2776
. 1915
. 1435
. 1474 | 206.0
67.20
26.70
19.28
6.201
8.377
1.933
1.153
.4533
.2020 | 0.367
.440
.504
.885
.609
.649
.721
.745
.778
.7785 | |--|---|--|--|--| |--|---|--|--|--| | | PRO | PELLER N | O. 128. | TABLE VIII- | -Continued. | | OPELLER N | 10. 1 27. | | | |---|---|---
---|--|---|--|--|---|---|---------| | V
ND | G | o. | C ₈ | Hildensy. | ND ND | G | G ₁ | G, | Efficiency. | | | 0.20
.26
.30
.35
.40
.55
.55 | 0.0625
-0627
-0628
-0628
-0625
-0625
-0615
-0604
-0585
-0584 | 7. 814
4. 013
2. 326
1. 425
9706
. 6837
. 4921
. 3530
. 2708
. 2017 | 195. 4
64. 22
95. 84
11. 95
6. 104
8. 373
1. 968
1. 200
• 7524
• 4774 | 0. 367
-631
-690
-554
-606
-662
-663
-725
-744
-766 | 0.20
.35
.30
.35
.40
.45
.50 | 0. 0401
. 0395
. 0385
. 0368
. 0346
. 0320
. 0291
. 0261 | 5. 013
2. 628
1. 426
. 8584
. 5406
. 3612
. 2228
. 1609 | 195. 3
40. 45
15. 84
7. 008
3. 379
1. 735
.9319
.5186 | 0. 430
- 491
- 643
- 643
- 642
- 637
- 644
- 634
- 680 | | | .70
.75
.80 | . 0514
. 0489
. 0417 | 1406
1119
0615 | .8057
1977
1278 | . 756
. 786
. 696 | · : , | | - ' | ` | · | | | | PR | OPELLER 1 | NO. 128. | | · • | PR | OPELLER I | NO. 129. | , | · · · · | | 0.20
.25
.30
.35
.40
.45 | 0. 0309
. 0258
. 0346
. 0339
. 0308
. 0287
. 0264 | 4. 618
2. 201
1. 281
. 7674
. 4819
. 8150
. 2112 | 115. 3
36. 66
14. 24
6. 265
3. 007
1. 556
. 8448 | 0. 440
. 508
. 862
. 556
. 615
. 006
. 268 | 1), 20
125
35
40
45
55
50 | 0. 0832
. 0830
. 0829
. 0821
. 0811
. 0895
. 0878
. 0845 | 7. 900
4. 032
2. 380
1. 448
. 9548
. 6530
. 4685
. 3276
. 2366 | 197. 8
64. 52
28. 90
11. 85
5. 958
8. 225
1. 834
1. 082
. 6878 | 0. 408
- 473
- 533
- 586
- 532
- 671
- 706
- 731 | | | | | | | | . 65
. 70
. 75 | . 0511
. 0478
. 0490
. 0379 | . 1722
. 1251
. 0993 | . 2663
. 1597 | .747
.788
.690 | | | | PR | OPELLER 1 | NO. 130. | | | PR | OPELLER I | NO. 181. | · | | | 0. 20
. 25
. 30
. 35
. 40
. 45
. 50
. 55
. 60
. 67 | 0. 0600
. 0596
. 0590
. 0592
. 0573
. 0559
. 0515
. 0515
. 0441
. 0892 | 7.500
3.815
2.185
1.358
.8963
.6125
.4812
.3035
.2227
.1006
.1148 | 187. 5
61. 04
24. 28
11. 09
5. 896
8. 030
1. 725
1. 023
8186
. 3801
. 2333 | 0. 412
- 474
- 582
- 583
- 667
- 667
- 660
- 718
- 710
- 660 | 25
- 26
- 30
- 35
- 40
- 45
- 45
- 55
- 70
- 75
- 75
- 75 | 0. 0828
. 0840
. 0856
. 0873
. 0830
. 0845
. 0845
. 0845
. 0741
. 0822
. 0739
. 0832 | 10. 35
5. 377
2. 168
2. 095
1. 375
- 9029
- 5079
- 5783
- 2861
- 1640
- 1248
- 0048 | 258. 8
80. 04
85. 18
16. 63
8. 995
4. 760
2. 772
1. 670
1. 080
6748
4410
. 1950
. 1950
. 1950 | 0. 355
421
430
450
532
851
605
705
705
706
778
778
800
701 | | | | | | | | .90
.95 | .0523 | . 0717 | 0885
0897 | .772
.730 | : | | | PR | OPELLER I | NO. 182. | | | PR | OPELLER 1 | NO. 139. | | | | 0. 20
. 25
. 25
. 25
. 25
. 25
. 40
. 45
. 50
. 55
. 65
. 70
. 77
. 80
. 85
. 85
. 85
. 85
. 85
. 85 | 0.0622
.0838
.0850
.0874
.0881
.0881
.0870
.0648
.0737
.0648
.0737
.0633
.0776
.0533
.0575
.0513 |
10.27
5.364
9.181
2.089
1.376
9961
5097
2787
2241
2149
1628
1337
0028
7704 | 256. 9
85. 35
36. 34
16. 65
8. 600
4. 776
1. 662
1. 662
1. 662
1. 663
1. 1933
1. 1935
1. 1935 | 0.384
431
493
547
595
637
705
774
778
778
788
788
788
788 | 0.28
.30
.38
.40
.45
.55
.55
.70
.75
.85
.20
.25
.20
.25
.20
.20
.20
.20
.20
.20
.20
.20
.20
.20 | 0.1038
.1047
.1060
.1076
.1078
.1107
.1117
.1119
.1110
.1093
.1067
.1087
.1090
.0988
.0902
.0841
.0774 | 6.642 3.877 2.472 1.680 1.200 8856 6713 5181 4043 3187 2639 1628 11002 1002 0669 0667 | 108.3
43.08
90.18
10.50
5.938
8.543
9.219
1.439
- 6806
4496
- 3196
- 319 | 0.349
410
467
573
619
660
695
774
778
804
810
806
801 | | TABLE VIII-Continued. | ופ | RUB | RLL | ED. | MΩ | 194 | |----|-----|-----|-----|----|-----| | <u></u> | n u | щ | īΘ | ı. | |---------|-----|---|----|----| | | 4 | ď | • | | | | P | ROPELLER | NO. 134. | TABUS AT | 11 | Continued | | COPELLER | NO. 135. | | |--|--|--|---|---|----|---|--|---|---|--| | V
ND | Ci | C ₁ | G, | Efficiency. | | ND
ND | $c_{\rm t}$ | O _k | a. | Efficiency. | | 0.25
.30
.35
.40
.45
.50
.55
.60
.70
.75
.80
.95
1.00
1.10
1.15 | 0. 1090
.1043
.1043
.1063
.1065
.1105
.1127
.1130
.1127
.1114
.1091
.1091
.1091
.0951
.0951
.0951
.0951 | 6.892
8.803
2.477
1.605
1.213
-8909
-8792
-8241
-4104
-3248
-2253
-2070
-1663
-1074
-0865
-0966
-0580
-0443 | 105. 5 42. 92 20. 22 10. 60 5. 990 3. 583 2. 245 1. 458 9712 6629 4897 3235 2. 302 1.190 0.085 0.0622 0.043 | 0.370
.422
.433
.539
.533
.631
.695
.781
.787
.787
.787
.506
.510
.500
.798 | | 0.25
-30
-35
-40
-45
-50
-50
-70
-70
-70
-85
-90
-95
-1.00
-1.10
-1.16 | 0.1019
1082
1080
1074
1101
1112
1120
1120
1138
1070
1081
0987
0987
0988
0087
0088
0087
0089
0089 | 0. 521 8. 523 2. 450 1. 473 1. 208 9777 9779 9279 9208 9208 9208 9204 9208 9208 9208 9208 9208 9208 9208 9208 | 104_3 42_48 20_00 10_49 8_908 3_591 2_945 1_4529838683545093147222415851134081106810293 | 0.380
-483
-483
-583
-583
-583
-584
-680
-691
-774
-779
-784
-789
-815
-815
-807
-785
-741 | | | PRO | PELLER N | ro. 136. | | | | PRO | PELLER N | 70. 157. | | | 0.25
.30
.35
.40
.45
.50
.55
.60
.85
.70
.85
.90
.95
1.00
1.15
1.15
1.20
1.25
1.30 | 0.1285
-1283
-1272
-1288
-1278
-1287
-1390
-1316
-1316
-1316
-1412
-1413
-1413
-1413
-1413
-1413
-1415
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410
-1410 | 8. 108 4. 697 2. 967 1. 997 1. 413 1. 999 1. 413 1. 7910 1. 6209 1. 4978 1. 4165 1. 2266 1. 2266 1. 2266 1. 1570 1. 1500 1. 16 | 120.7 82.18 24.22 12.48 6.978 4.158 2.516 1.726 1.178 -8963 -4322 -3168 -1348 -0980 -0750 -0558 -0430 -0817 -0227 -0178 | 0.289
.345
.400
.404
.806
.807
.607
.710
.787
.787
.788
.778
.905
.820
.821
.821
.821
.821
.821 | | 0.25
.30
.35
.45
.50
.55
.50
.55
.50
.55
.50
.50
.50
.5 | 0.1210
1214
1224
1234
1251
1274
1302
1300
1378
1390
1390
1390
1390
1390
1390
1390
1390 | 7.744 4.497 2.843 1.928 1.373 1.019 -7826 -6152 -4013 -8265 -1845 -1845 -1844 -1052 -0526 -0526 -0526 -0526 -0526 -0526 -0526 | 128. 9 49. 97 22. 25 12. 05 6. 780 4. 078 2. 887 1. 715 1. 172 - 8200 - 8858 - 4242 - 3110 - 2008 - 1714 - 10964 - 0775 - 0413 - 0413 - 0417 - 0413 - 0417 - 0413 | 0. 201
- 360
- 417
- 474
- 527
- 575
- 516
- 654
- 657
- 715
- 780
- 780
- 780
- 780
- 780
- 807
- 807
- 807
- 801
- 822
- 824
- 821
- | | | PRO | PELLER 1 | TO. 188. | | | | PRO | PELLER N | (O. 139. | | | 0.95
.30
.35
.40
.45
.50
.55 | 0.1266
.1280
.1290
.1390
.1345
.1376 | 8.10\$
4.740
8.028
2.088
1.476
1.100 | 129.6
53.67
94.68
19.90
7.290
4.400
2.796 | 0.817
.873
.436
.478
.885
.869 | | 0.15
.20
.25
.35
.30
.40 | 0.0949
-0247
-0241
-0234
-0225
-0814 | 7.35
3.088
1.542
.3567
.5343
.3843 | 828. 0
77. 20
24. 68
9. 680
4. 285
2. 000 | 0.385
.469
.517
.522
.490
.415 | | .60
.55
.70
.75
.80
.85
.90 | .1620
.1447
.1443
.1445
.1445
.1451
.1407
.1578 | .6630
.5369
.4227
.3428
.2795
.2391
.1833 | 1.839
1.947
-8648
-6108
-4867
-2171
-2325 | .645
.579
.707
.783
.761
.776 | | | PRO | PELLER N | io. 144. | | | .95
1.00
1.05
1.10
1.15
1.20
1.25
1.30 | .1830
.1282
.1229
.1170
.1105
.1087
.0881
.0800 | .1851
.1282
.1063
.0679
.0727
.0600
.0492
.0402
.0828 | .1718
.1283
.0968
.0727
.0550
.0417
.0815
.0288
.0178 | .808
.813
.831
.836
.827
.824
.817
.804 | | 0.15
.20
.25
.35
.36
.35
.40 | 0.0224
.0226
.0216
.0201
.0138
.0161 | 6.922
2.835
1.883
.7446
.4209
.3515 | 808.0
7 0.62
22.12
8.271
3.486
1.578 | 0,895
-461
-488
-470
-309
-944 | | | | PELLER N | | | | - | PR(| PELLER 1 | TO. 148. | | | 0.15
.20
.25
.30
.35
.40 | 0.0262
.0261
.0258
.0253
.0243
.0243
.0211 | 7.763
3.263
1.661
.9372
.3668
.3610
.2392 | 945.0
81.88
20.42
10.41
4.627
2.286
1.182 | 0.37
.448
.491
.801
.40
.40 | | 0.15
.20
.25
.30
.36
.40 | 0.0258
.0245
.0290
.0211
.0198
.0170 | 7.645
3.063
1.473
.7814
.4502
.2656 | 839.8
75.58
25.85
8.685
8.675
1.660 | 0.382
.451
.493
.491
.439
.264 | 58006-28- F16. 21. Frg. 23. Frg. 25. : ; F10. 27. F1g. 31. Nomographic Chart for solution of equation > Metric Units Plate IV 237